
Navy Software Testing Strategy

© 2025 Carnegie Mellon University 1
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

© 2025 Carnegie Mellon University [DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Alexander Volynkin, Ph.D.

Brent Clausner

Joseph Yankel

Navy Software Testing Strategy

M A R C H 1 , 2 0 2 5

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 2
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Document Markings

Copyright 2025 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University for the

operation of the Software Engineering Institute, a federally funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed as an o fficial Government position, policy, or decision,

unless designated by other documentation.

References herein to any specific entity, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by Carnegie Mellon University or its Software Engineering Institute nor of Carnegie Mellon University - Software Engineering

Institute by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS.

CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT

LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution. Please see Copyright notice for non-US Government use

and distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is

required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM25-0185

mailto:permission@sei.cmu.edu

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 3
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Introduction and Roadmap

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 4
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

What This Brief Covers

This presentation provides practical strategies for reducing technical debt and improving

maintainability in legacy systems through test automation. It also includes general strategy that

would apply to new software system acquisition.

Case Studies - Examples of successful test automation adoption

Testing Strategies - Approaches in testing legacy, new, and cyber physical systems

Automated Testing - Best practices for effective test automation

Hardware In The Loop - Strategies for testing cyber-physical systems

Configuration Management - Best practices in CM, considerations for separate test organizations

Roles and Responsibilities - List of various roles related to testing and their functions

Software Tools - Lists of various tools and their usage

The notes area of this briefing is used to articulate additional information.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 5
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Legacy systems suffer from high maintenance costs, brittle codebases, and slow

development cycles.

Solution: Test automation is a key enabler for reducing technical debt and

improving maintainability.

Approach: Introduce positive patterns to adopt and anti-patters to avoid.

Framing the Problem

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 6
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Key Positive Patterns

• Incremental automation starting with high-value, stable components

• Prioritizing regression testing for critical workflows

• Leverage hardware-in-the-loop testing when applicable

• HIL testing is time consuming, and requires considerable planning

• Gradually refactor, start small and improve testability over time

• Utilize Configuration Management best practices Icon

Description

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 7
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Replacing all manual tests at once with automation efforts

• High-reliance on brittle UI testing

• Ignoring necessary infrastructure improvements or not demanding

Infrastructure As Code (IaC) and Configuration as Code (CaC) utilization

• Lack of clear ownership for identifying test maintainers

Key Anti-Patterns

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 8
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

General Testing Facts

Large (Slow)

Typical Large End-to-end UI

Medium

Typical Medium External Services Single Ul

Small (Fast)

Typical Small Individual Classes

Have as many cheap,

fast running tests as possible

and minimize the number of

expensive and slow tests.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 9
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

DoD Acquisition Requirements Are Unique

DoD requires large systems to plan for and

undergo independent Operational Test &

Evaluation

• Planned and executed by a different

organization than the Program Office

acquiring the software system

• Requires an early Test and Evaluation

Strategy more compatible with a “big

bang” delivery than the incremental

delivery typical in agile

USAF guidance (AF99-103) now aligns

independent testing with a more

incremental approach

• Integrated testing and integrated test

teams are a specific strategy that is

highlighted

• Incremental testing is specifically

discussed and encouraged prior to full

operational testing of a deployed

capability

Test strategy needed that accounts for software not being done, requiring maintenance.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 10
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Case Studies

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 11
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Case Study 1: Testing Software/Hardware Contractor
Deliverables for Navy Cyber-Physical System

Ship hardware controlled by HMI/PLC with extensive software and firmware functionality

that is composed of a mix of ladder logic and C/C++ firmware code

Initial State:

• Multiple hardware units. Each must be developed and tested individually

• Software and portions of hardware developed by contractor

• Software has significant GUI component. User Interface displayed on specialized
hardware

• NAVY must do integration and acceptance testing of each component. Many

components are identical and must be tested individually

• Manual process throughout: test deployment, test configuration, testing and log analysis

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 12
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Initial State of Testing

• GUI testing is automated with Robot-based test automation tool

• Communication with real hardware maintained using available vendor tools

• Code is loaded manually onto hardware

• Test environments are set up using a slow, manual process (may take days)

• Complex test environment with many hardware components.

• Lack of simulation

• Test reports are stored and managed manually

• Manual correlation between code drops and tests performed (prone to human

error)

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 13
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Approach: Build Initial Test Workflow

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 14
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Introduce Automation Test Pipeline

• Offline or cloud operation

• Gitlab for CI/CD and version control

• Repeatable clean state for each deployment

• Test deployment on code commits (Integrate with CI/CD)

• Automated hardware provisioning

• Automatic hardware communication server configuration

• Simulation kits configuration and deployment

• Background static analysis on Ladder Logic code

• Test Log aggregation storage, reporting and dashboarding

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 15
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Automated Test Pipeline Architecture

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 16
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Current State Test Workflow

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 17
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Case Study 2: Testing on multiple versions of
Windows OS (8, 10, 11)

Software is obtained that is capable of being deployed on different versions of windows

Requirements:

• Need to ensure no errors or any faults are encountered when executing the software

• Memory usage needs to not grow significantly

• CPU usage also needs to be monitored that doesn’t cause additional cycles

• No additional network traffic is used and what is used is logged and verified

• All output is captured and logged

• Storage of the software is necessary for longevity

• Software usage must be well-documented for users to be able to quickly use it.

• Eliminate slow, error prone test environment creation

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 18
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Approach used to automate testing

• Utilize a container or virtual machine to host the OS

• Use a shared mount between host and container/VM to store files from test

• Use screenshots as needed to capture system responses or state

• Define and verify pass/fail criteria

• Cleanup

• Container/VM is shutdown at end of test execution

• Container/VM state needs restored to original, clean state

• Provide a means to connect to a shell within the container/VM

• Keyboard/mouse simulation may be required to interact with application under

test

• Use CI/CD pipelines to automate testing, infrastructure creation, and delivery of

software artifacts

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 19
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Lessons Learned

• Cyber physical systems are much more complicated to test than software alone

• Utilize automation for delivery of artifacts into various staging environments for

further testing

• Require simulation software for both hardware and software components as

contractual agreements.

• Establish hardware-in-the-loop testing as early as possible, substituting

simulation/emulation early while waiting on hardware

• Don’t reinvent the wheel. Use well known techniques, existing test automation

frameworks and processes

• Automation may require a significant amount infrastructure resources, so it is

important to discover early

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 20
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Testing Strategies for Legacy Systems

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 21
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Lack of existing automated tests

• Poor modularity and testability

• Unclear or outdated requirements

Challenges in Testing Legacy Software

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 22
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Use strangler pattern for testing. Instead of a complete rewrite, begin by

adding new features around the edge of the existing system and gradually

replacing the old with the new.

• Use a proxy or façade layer to act as an intermediary, to test either the legacy

system or direct to the new functionality being updated.

• Ensure Unit, Integration, and Regression tests are updated and tested as new

features are developed.

• Execute smoke tests first and automate critical-path tests to ensure basic

system stability

Effective approaches

Automated regression tests that focus on key features helps to ensure expectations.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 23
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Testing is necessary when new functionality or data is added, and whenever

deployment configuration or infrastructure is changed.

• Priority should be given to compatibility, performance, and regression testing,

but limited to new functionality and configuration.

• Compatibility testing ensures that new features are compatible with the existing

system. Check for conflicts or dependencies that might arise from integrating

new features with legacy code.

• Performance testing ensures that the new features do not degrade the

performance of the legacy system.

Best Practices

Modular software lends itself better to application of the strangler pattern more easily..

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 24
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Testing Strategies for New Systems

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 25
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Shift-left testing requires early unit and integration tests

• Continuous Integration (CI) is achieved by using automated test suites and

executing tests with every build

• Feature toggles, A/B testing, and canary releases are approaches that allow

faster and safer deployments

• Code review isn’t just for application code, test code should be reviewed also

Modern Strategies May Be Adopted Over Time

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 26
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Similar approaches can be used for software and HIL testing

• Organize and introduce test procedures as early as possible in the

development cycle

• If software is being developed by a contractor, consider specifying test

engagements in the contract. Early integration testing is crucial for quality and

stability of the software. Contractors deliver test harnesses, including

simulator/emulator configurations with the main software deliverable

• Ensure compatibility of automated testing procedures across all software

components subject to integration

Best Practices

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 27
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Testing Strategies for Cyber Physical

Systems

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 28
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Testing with Hardware in the Loop [1/2]

• Integration testing with Hardware early is important as it helps eliminate

human errors

• Consider adding automated tests against Hardware

• Use consistent and repeatable test environment/configuration

• Regular software testing pipeline may be sufficient with additional hardware

testing harnesses. Examples of such harnesses include:

• Hardware provisioning – automated loading of firmware into hardware

components

• Hardware/Software simulation

Icon

Description

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 29
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Testing with Hardware in the Loop [2/2]

• Simulate Hardware when you can for unit, sub and system tests

• Don’t expect for simulation to completely replace Hardware CI

• Don’t wait until end-to-end testing to test with real Hardware components

• Perform Hardware “arming” tests frequently

• HW/SW configuration for reliable CI is very challenging unless simulating

• Consider full memory snapshots for SW and HW components

Icon

Description

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 30
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Key Strategies for Introducing Regression Tests [1/2]

• Incrementally add tests, beginning with the most critical functionality before

expanding

• Prioritize tests that exercise the most frequently used functionality and most

likely impacted by changes

• Perform a risk assessment to identify highest error rate areas of the

application. This can be done by reviewing issues creating during

development that are tagged ‘bug’. NOTE: requires a test strategy that

mandates good issue tracking and tagging

• Use the same frameworks in place for existing tests and continue to add to

them

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 31
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Key Strategies for Introducing Regression Tests [2/2]

• Collaborate with sustainment teams to review tests and verify efficacy

• Automate all new functionality and add to regression test suite

• Regularly review and maintain tests

• As part of a test strategy, ensure test maintenance is an area that is covered

and financially supported

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 32
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Version Controlled Tests [1/2]

• Tests should be version controlled to be specific to version of software

• Newer versions of software can have new tests added

• New version of software can have older tests decommissioned

• Features can change with new versions, so tests may need updated to utilize

features

• Features can be removed

• Modules can be deprecated

• These tests are regression tests

• Allows for faster turnaround for testing patches

Maintain a branching structure like the version of software. Major, minor, and patch.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 33
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Version Controlled Tests [2/2]

• Software can have multiple releases

- Example: 12.0.4: (<major_version>.<minor_version>.<patch>)

• Any number of updates are possible to occur at different versions

- Most Major versions

• Some features modified/removed/added

- Minor versions

• Some features have some underlying functionality modified

• Most features stay but can be deprecated

- Patches

• Possibly targeted to fix security issues

• Contain fixes for specific issues

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 34
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Avoid test automation gotchas

• Much more work converting manual to

automated testing than expected

• Don’t automate tests for unstable

interfaces

• Do use exploratory testing

• Do automate tests for APIs, stable user

interfaces

• Tools don’t automate test design and

judgement

• Capture/replay usually results in

breakage and/or test script re-recording

• Set expectations for test asset

maintenance

• Automate performance testing

incrementally

• Follow test automation design patterns

Consider carefully what should not be automated and automate everything else.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 35
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Best Practices in Automated Testing

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 36
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Automated tests take a manual workflow, make it have scripts or other software

execute a series of steps and verify that output matches expectations

• Testing that takes a large amount of time can benefit from automation

• Smaller tests can be run quickly and possibly in parallel

• Prioritize automated tests that can cover most modules and take less time to

run/write

• Utilize CI/CD Pipelines to run automation on code commits and/or merges

Best Practices In Automated Testing

Prioritize writing automated tests that cover most modules and are quick to write.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 37
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Functional Testing Automation

Focus on automating existing manual integration tests and prioritize:

• Manual tests that cover high priority requirements

• Existing integration tests that cover the most functionality

Unit-testing may be faster to automate but functional coverage is

more important.

New integration tests should then be automated after completing

automation of the existing tests.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 38
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Automated Software Testing Types [1/3]

Unit testing

• Consists of testing functions and methods of an application.

• Easy to write and quick to execute

• Requires source code

• Easily added to the build system

Integration testing

• Tests functionality between different modules

• Automated tests rely on modules being either complete or near complete

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 39
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Automated Software Testing Types [2/3]

System testing

• Verifies that end-to-end system testing meets all specified requirements

• Automated tests can take longer to write and run

Acceptance testing

• Verifies that specific requirements are satisfied

• Possibly includes performance-based tests

• Faster to write than system tests

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 40
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Automated Software Testing Types [3/3]

Regression testing

• Tests previously executed are re-executed after a release

• Includes any of the previous testing types

• Must be maintained and updated as new functionality is added

Smoke Testing

• Smoke testing focuses on speed - a quick, less comprehensive regression test

• Typically executed as a predetermined set of tests on a build of software after any

significant change.

• Excellent for quickly catching issues on tests that may normally take a long time to

execute.

• Example: Instead of executing 1000 tests, just execute a few tests by category

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 41
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Goals for Agile Process with Automated Testing

Increase team, DT, and OT

confidence in code quality

• Improve communication with

DT/OT what kind of testing

has passed

• Must test more of the codebase

sooner and faster

As Is Should be

~5%

Test instance

Site

Development ~70%

~25%

~85%

~5%

~10%

Test Manager, Major Defense System, 14 Dec 2016

More testing is done on delivery than at time of development.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 42
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Test Life Cycle

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 43
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Test Life Cycle

Requirements
Management

Test Planning

Test Case

Development

Establishing

Test
Environments

Configuration
Management

Continuous
Testing

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 44
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Requirements Management: Identification

Requirement Identification - Gather and document all functional and non-functional

requirements from stakeholders.

• Clarity and Focus: Help the team understand what the software is supposed to do

• Prioritization: Helps prioritize which features and aspects of the software are most critical

to test

• Test Coverage: Ensuring that all requirements are identified makes it possible to create

test cases that cover all scenarios, reducing the risk of missing critical bugs

• Traceability: Helps trace test cases back to requirements, making it easier to understand

the scope of testing and maintain accountability

• Early Detection of Issues: Helps detect issues early in the development process, reducing

costly fixes later

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 45
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Requirements Management: Prioritization

Requirement Prioritization - Rank requirements based on their importance and

impact on the project.

• Resource Allocation: Projects often have limited time and resources. Prioritizing

requirements ensures that the most important features are tested first, making optimal use

of available resources

• Risk Management: By identifying and focusing on high-priority requirements, testers can

address areas with the highest risk first, catching critical defects early in the process

• Clarifies Goals: It brings clarity to development and testing goals, aligning the team to

work towards the most important objectives and avoid unnecessary workload

• Incremental Delivery: In agile and iterative development models, prioritization allows for

incremental delivery of features, ensuring that each iteration includes the most critical

functionality

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 46
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Requirements Management: Traceability Matrix

Traceability Matrix - Create a traceability matrix to map requirements to

corresponding test cases.

• Traceability: It provides a way to trace the requirements through the development

lifecycle, ensuring that each requirement is addressed by design, implementation, and

testing efforts

• Requirement Coverage: It ensures that all requirements are covered by test cases, which

helps in identifying any gaps in testing

• Impact Analysis: When changes occur, a traceability matrix helps in assessing the impact

on the various aspects of the project, making it easier to manage changes

• Accountability: It defines a clear path of responsibilities, indicating which team or

individual is responsible for each requirement and its associated test cases

• Compliance: For projects requiring adherence to standards, a traceability matrix ensures

that all standards and legal requirements are met

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 47
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Requirements Management: Version Control

Version Control - Manage changes to requirements through version control to

ensure consistency (Jira, Azure, etc.).

• Historical Tracking: Version control allows you to track the history of changes made

to requirements. This is critical for understanding how and why requirements have

evolved over time

• Baseline Management: Helps in managing different baselines, such as initial

requirements, agreed-upon changes, and final developed requirements

• Compliance and Auditing: For projects that require compliance with regulations or

standards, version control provides an audit trail that shows how requirements were

managed and implemented

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 48
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Requirements Management: Review and Validation

Regularly review requirements to identify and resolve ambiguities, inconsistencies,

and gaps.

• Ensuring Accuracy: Helps verify that requirements accurately reflect the needs and

expectations of stakeholders. It reduces the risk of misinterpretations or misunderstandings

• Improving Testability: Clear, precise, and well-defined requirements are easier to

translate into test cases, ensuring comprehensive and effective testing

• Early Detection of Issues: Early reviews and validation can uncover potential problems or

conflicts before they become costly to fix later in the development process

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 49
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Define Scope and Objectives - Clearly outline what needs to be tested and

the goals of the testing process

• Identify Test Types - Determine the types of tests to be conducted, such as

unit, integration, system, and acceptance tests

• Resource Allocation - Assign roles and responsibilities to the testing team,

ensuring adequate resources are available

• Create Test Environment - Set up the necessary hardware, software, and

network configurations to replicate the production environment

• Develop Test Schedule - Establish timelines for test preparation, execution,

and review, along with milestones and deadlines

Test Planning [1/2]

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 50
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Risk Management - Identify potential risks and create mitigation strategies to

address them

• Test Data Preparation - Generate or acquire test data that accurately reflects

real-world scenarios

• Test Case Design - Develop detailed test cases that cover all functional and

non-functional requirements

• Review and Approval - Conduct reviews of the test plan with stakeholders

and obtain necessary approvals

• Monitor and Adjust - Continuously monitor the testing process and adjust as

needed to stay on track and achieve objectives

Test Planning [2/2]

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 51
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Test Case Development [1/2]

Understand Requirements

• Thoroughly review the software requirements, specifications, and acceptance criteria

• Identify the scope and objectives of the testing

Identify Test Scenarios

• Based on the requirements, list all possible test scenarios

• Consider both positive (expected to pass) and negative (expected to fail) scenarios

Define Test Case Structure

• Establish a clear structure for test cases, typically including:

• Test Case ID: Unique identifier

• Test Case Description: Brief description of the test case

• Preconditions: Any setup required before the test

• Test Steps: Step-by-step instructions to execute the test

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 52
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Test Case Development [2/2]

Define Test Case Structure (cont.)

• Test Case ID: Unique identifier

• Expected Results: The expected outcome of each step

• Post-conditions: Any cleanup required after the test

Prepare Test Data

• Identify and prepare the necessary test data required for the test cases

• Ensure the test data is representative of real-world scenarios

Add Preconditions

• Document any prerequisites or setup needed before executing the test case

• This includes the initial state of the system, configurations, or specific data setup

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 53
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Establishing Test Environments [1/3]

• Install automated testing tools (e.g., Selenium, PlayWright)

• Set up performance testing tools (e.g., LoadRunner, JMeter)

• Generate or obtain test data that accurately represents real-world scenarios

• Configure Version Control Systems:

• Set up repositories (e.g., Git) to manage code and track changes

• Implement branching strategies for different testing phases

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 54
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Establishing Test Environments [2/3]

Establish Continuous Integration/Continuous Deployment (CI/CD):

• Configure CI/CD pipelines (e.g., Jenkins, GitLab CI) for automated testing and deployment

• Integrate testing into the CI/CD pipeline for regular and automated test runs

Define Test Cases and Scripts:

• Write and organize test cases for various scenarios

• Develop automated test scripts if applicable

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 55
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Establishing Test Environments [3/3]

Set Up Monitoring and Logging:

• Implement monitoring tools (e.g., New Relic, Splunk) to track system performance

and issues

• Set up logging mechanisms to capture and analyze test results

Perform Test Environment Validation:

• Verify the environment setup by running sample test cases

• Ensure that the environment replicates the production setup closely

Document and Communicate:

• Document the setup process, configurations, and any issues encountered

• Share the documentation with the testing team and stakeholders

Monitoring environments and communication help to keep stable environments.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 56
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Test Execution [1/2]

• Testing as early as possible, considered shifting the testing left

• Automated tests should have no intermittent failures

• Non-performance based automated tests should be added into the CI/CD

Pipeline

• Unit tests should be included into the build

• Verify as the system is compiled.

• Integration testing

• Executed after unit-testing

• Development should be complete or near complete

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 57
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Test Execution [2/2]

• System testing executed after integration testing

• Acceptance testing executed after system tests

• Regression testing

• A new release of software should have the acceptance tests re-run

• All automated tests that are capable of being run, should be run

• Pipeline can be setup to test new software upon deployment with regression tests

• Test environment needs to be stable for executing tests at any stage

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 58
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Test Automation Reference Architecture

Bug Tracking

Test Asset Management

Application Life Cycle Management

Requirements Management

Model-based Systems Engineering Configuration Management

Continuous Integration

Continuous Deployment

Load Generation

Performance Monitor

Network Capture

BDD/ATDD Support

Combinational Design

Model-based Testing

J-Meter

SOASTA

WireShark
Dev Test Framework

Code Coverage Analyzer

Static Analyzer

Mutation Testing

Fault Injection

Web UI Harness

Dot Net UI Harness

Smartphone Harness

SOA/API Harness

Selenium

Silk Test

Appium

SOAP UI

Service

Virtualization

CA-Lisa

SpecFlow

ACTS

Smartesting

Junit

Klocwork

Fortify

Pit

Byteman

Representative tools, not

recommendations.

Many for each slot Company, product, and service names used in

this slide are for illustra tive purposes only. All

trademarks and registered trademarks are the

property of their respective owners.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 59
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Define a Testing Strategy: Clearly outline the scope, objectives, and types of testing (e.g.,

unit, integration, system, acceptance). Ensure the strategy aligns with goals

• Test Automation: Automate as many tests as possible. Begin with unit tests, then move on to

integration tests, system tests, and user acceptance tests. Tools like Selenium, JUnit, and

TestNG can be helpful

• Continuous Integration (CI): Integrate code changes frequently and automatically run tests

upon each integration. This helps detect issues early. Use CI tools like Jenkins, Gitlab, etc.

• Continuous Deployment (CD): Automate the deployment of software to various

environments (development, testing, staging, production). This ensures that every change that

passes the tests is automatically deployed to the next stage

Continuous Testing [1/2]

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 60
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Environment Management: Use containerization tools like Docker to ensure consistency

across different environments. This helps in replicating production-like environments for

testing

• Test Data Management: Strategy for managing test data. This includes generating, masking,

and maintaining test data that mimics real-world scenarios

• Monitoring and Feedback: Implement monitoring tools to track the performance and stability

of the application in real-time. Use feedback from these tools to improve the testing process

continually

Continuous Testing [2/2]

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 61
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Test Life Cycle summary

• Planning tests, focus on requirements.

• Planning can expose testing environmental needs

• Testing environments must be stable

• Executing tests should be done early and automated with CI

• Tests should be stored and version controlled

• Testcases complete with steps and description are stored in a test case manager

• Automation should be version controlled (e.g., IaC scripts)

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 62
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Software Test Tools

• Jira add on for configuration management

• Xray test management for jira

- Allows test case creation

- Test Plans

- Ties into EPICs for requirement linking

https://marketplace.atlassian.com/apps/1211769/xray-test-management-for-jira?tab=overview&hosting=cloud

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 63
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Configuration Management

Considerations when test organizations are separate from the
development organizations as seen in DT/OT scenarios in
government or when dealing with sustainment/maintenance.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 64
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Define Configuration Items: Identify the items that need to be managed, such as source

code, test scripts, test data, documentation, and any dependencies

• Establish Version Control: Use version control systems (VCS) like Git or Bitbucket to

manage changes to configuration items. Ensure that all changes are tracked and maintain a

history of revisions

• Set Up Build Automation: Implement build automation tools like Jenkins, Maven, or Gradle

to automate the process of compiling, assembling, and testing the software. This ensures that

builds are consistent and reproducible

• Manage Environments: Clearly define and document the configurations for different

environments (development, testing, staging, production). Use tools like Docker or Vagrant to

create consistent and isolated environments

Best Practices [1/2]

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 65
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Implement Continuous Integration (CI): Integrate code changes frequently and automatically run

tests using CI tools. This helps to detect and fix issues early in the development process.

• Automate Deployments: Use deployment automation tools to deploy software to different

environments. This reduces manual errors and ensures that deployments are consistent.

• Configuration Auditing: Regularly audit configurations to ensure compliance with policies and

standards. This helps in maintaining the integrity and security of the software.

• Issue Tracking and Change Management: Use issue tracking systems like Jira or Bugzilla to

manage bugs, enhancements, and tasks. Implement a change management process to review and

approve changes before they are applied.

• Backup and Recovery: Implement a backup and recovery plan for critical configuration data.

Ensure that you can restore configurations in case of a failure or data loss.

Best Practices [2/2]

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 66
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Establish Clear Ownership and Boundaries

Define responsibilities for each

organization and document

them in a formal agreement

(e.g., RACI matrix)

Task / Stakeholder
Prime

Contractor
Sub A Gov't Test Team

Unit, Integration test
creation

X

Simulation X

Validate Acceptance
Criteria

X

• Prevents confusion and ensures accountability
• The test development team owns test creation and documentation
• The software sustainment team ensures compatibility with software updates
• Independent test organization owns validation and independent testing

Having boundaries laid out lets everyone know their responsibilities.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 67
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Use a Shared CM System with Role-Based Access

All configuration artifacts (code, tests, IaC for environments, and data) should be

in a shared CM system such as Git. This ensures that all teams have access to

the latest versions while maintaining security and role-specific access.

Best Practices

• Developers have access to test creation repositories (Read/Write)

• Sustainment teams have read access for integration and bug fixes (Note that

these sustainment teams should exist and be working throughout the

development)

• Independent testers have separate branches for validating or adding their

own tests

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 68
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Implement Versioned Test Suites

Tests suites must be versioned alongside software releases to guarantee

compatibility between software and their corresponding tests.

Best Practices

• Store test suite changelogs with details on tests that have been

created, deleted, or modified

• Create tags or branches for each test suite corresponding to software

versions

• Maintain backward compatibility for older software versions as needed

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 69
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Standardize Test Formats and Metadata

As much as possible, standardized formats should be used for test metadata

schemas to ensure tests are understandable, portable, and useable by all

parties.

Best Practices

• Include metadata schema such as test ID, purpose, prerequisites, and

expected results

• Use a shared naming convention for files and test cases

• Test artifacts should be self-contained, requiring minimal external

dependencies

• Test results should be consumable by the reporting tool

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 70
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Automate Validation and Verification Processes

Test validation and execution should be automated, preferably in a CI/CD

pipeline to reduce manual effort, increase consistent results, and enabling trust

through transparency of test results

Best Practices

• Test teams are responsible for implementing both static and dynamic tests

and analyzing their results

• Any independent test organizations should validate tests against defined

criteria using CI/CD

• Test artifacts should include execution logs, reports, and validation results all

stored in a shared repository. This is often inside the CI/CD system, so

appropriate access should be granted.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 71
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Maintain Baseline or Common Test Environment

Test environments should be defined and documented to ensure tests are

executed consistently across organizations.

Best Practices

• Use Infrastructure as Code (IaC) to standardize environment setup

• Separate configurations should be maintained for development, validation,

and production testing

• Environment definitions should be version-controlled along with application

code, and tested for reproducibility

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 72
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Archive and Trace Test Artifacts

Test artifacts should provide traceability to requirements, defects, and releases

to facilitate accountability and simplify audits.

Best Practices

• Maintain a traceability matrix linking tests to software features, requirements,

or defects

• Environment definitions should be version controlled along with application

code, and tested for reproducibility

• Older test suites should be archive and properly annotation on their purpose

• Unique IDs should be used for tests across all organizations

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 73
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Define Independent Test Validation Processes

Independent test organizations should validate existing tests and execute their

own tests without compromising integrity of the configuration

management. This allows for the neutrality necessary for independent testing

and builds confidence in the process.

Best Practices

• All tests must have documented validation criteria

• Results should be shared early and often to all stakeholders, especially

developers

• Separate repositories or branches should be used for independent tests

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 74
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Regular Communication and Feedback Loops

Formal communication channels and review cycles should be established and

planned across all organizations to promote collaboration and align goals and

priorities.

Best Practices

• Create a dashboard to track test results, and give visibility into progress,

improvements, and setbacks

• Establish a regular cadence to meet with all stakeholders to discuss testing

process and metrics

• Use a ticketing system to track and resolve issues related to test processes

and results

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 75
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Hardware In The Loop Testing

Considerations

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 76
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

HIL Testing

• Modern software development benefits from DevSecOps approach:

• Development Pipeline

• Automated testing, including security

• Continuous Integration/Deployment

• Much harder to do if hardware is involved:

• Requires hardware testbeds

• Complicated and unstable toolchains

• Unstable I/O to external dependencies

• Often slow response time

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 77
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

DevSecOps and Hardware Components

• Simulate HW when you can for unit, sub and system tests

• Don’t expect for simulation to completely replace HW CI

• Don’t wait until end-to-end testing to test with real HW components

• Perform HW “arming” tests frequently

• HW/SW configuration for reliable CI is very challenging unless simulating

• Consider full memory snapshots for SW and HW components

Simulated hardware allows tests to be performed quicker.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 78
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Hardware-Based Testing

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 79
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Typically used during initial prototyping but can also extend into testing

• Convenient due to multitude of available I/O options already built in

• Very limited as they usually represent the controller, no custom hardware,

sensors, etc.

• Not the actual hardware, requires system level tests on actual hardware

Development boards and prototypes

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 80
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• At the edge of software and hardware

• Hardware replaced in software with a set of API calls

• Closer to simulation but easier to develop

• Not a bad option to do early unit tests on the software side only

• Does not test hardware at all and does not fully test the software either

Hardware substitution with API

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 81
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Hardware Simulation

• Fully or partially implemented hardware functionality in software

• Emulation is often down to the instruction set

• Many forms exist, each has its limitations

• Emulation introduces latency

• Significant effort to create and maintain a functional simulator

• Many companies have a dedicated simulator “SIM” team

• Efficient development of complex systems “requires” a simulator, often custom

• Off the shelf simulators exist, provide generic simulation and test integration

capabilities

• May not be sufficient for a complex system

• Proprietary technology maybe difficult to extent

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 82
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

• Start up the simulation team early in the dev process

• Perform early SW development with API-based substitution and HW dev

boards

• Basic simulator ready in time for sub-system and unit tests in CI

• Hardware testbed and simulator management with configuration and memory

snapshots to improve test stability

• Daily/Weekly “arming” tests with real HW

• End-to-End tests on real hardware once ready

Hybrid Approach

Simulators can be used with CI pipelines and snapshots can make stable tests.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 83
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Diving into Simulation

• CPU/Controller emulation at instruction set level

• Very powerful as it allows snapshots and replays of the entire state of the system

• By itself, not very useful for complex systems

• Component/peripheral devices emulation

• Serial interfaces, USB controllers, network, I2C, SPI, Flash, etc.

• Very important for a reliable simulation

• Difficult to customize

• Perfect for Kernel or embedded system development

• Rely primarily on the CPU and I/O virtualization

• Commercially available CPU virtualization modules

• Virtualize development boards

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 84
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Roles And Responsibilities

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 85
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Category Roles

Program /

Product

Management

• Portfolio Management

• Finance & Budgeting

• Program Manager

• Project Manager

• Scrum Master

Requirements

Engineering &

Analysis

• Domain SME

• Requirements Engineer

• System Analyst

• Product Owner

• Product Manager

Development

and Design

(Application)

• SW Dev Engineer

• SW / Cloud Architect

Category Roles

Data

Management

• Data Analyst

• Data Scientist

• Data Engineer

• DBA

Operations • Platform Ops

• Application Ops

• Network Engineer

Configuration

& Release

Management

• Configuration Manager

• Release Manager

User Support • Platform Support

• Application Support

• Tech Writer

• Web Site Designer

Roles and Responsibilities

Category Roles

Development

and Design

(Platform)

• SW Dev Engineer (IaC)

• DSO Engineer

• Site Reliability Engineer

• Platform Architect

• Platform Engineer

User Design • User Experience

Designer

• User Interface

Security • Security Engineer

• CISO

• SCA

Test / QA • Test Manager

• Test Engineer

• T&E QA Analyst

• Test Automation

Engineer

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 86
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Testing roles considerations

It is typical for test roles to include the following:

• Test Manager - Oversees strategy, planning, and execution; ensures alignment with project goals

• Test Engineer - Designs, executes, analyzes test cases to validate software functionality and performance

• T&E QA Analyst (Test & Evaluation Quality Assurance Analyst) - Ensures compliance with standards;

validates test results and artifacts

• Test Automation Engineer - Develops and maintains automated test script, frameworks, and test

environments

• Performance Test Engineer - Focuses on load, stress, and scalability testing to ensure system reliability

• Security Test Engineer - Conducts vulnerability analysis, security assessments, and static and dynamic

application security testing

• Configuration Manager - Manages test environments, version control, and test data consistency

Make sure to allocate enough resources and identify training necessary to support the various roles of testing.

Test-Driven Development (TDD) requires testing skillsets similar to developer skillsets.

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 87
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Presentation Name

Software Tools

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 88
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Software Tools

• Test Environment Creation

• Containerization IaC

- Docker

• Virtualization IaC

- Vagrant, Ansible, Terraform

• Log viewing

- new relic, splunk

• Configuration Management

• Source Control

- Git, GitLab, Subversion, Bitbucket

• Issue Tracking

- Jira, Bugzilla, Xray(Jira add-on)

Test automation

• Frameworks

- Selenium, Playwright, JUnit, TestNG, Jenkins

• Performance tools

- LoadRunner, JMeter

• Build automation

- Maven, Gradle

https://www.docker.com/
https://www.vagrantup.com/
https://docs.ansible.com/
https://developer.hashicorp.com/terraform?product_intent=terraform
https://www.splunk.com/
https://git-scm.com/doc
https://about.gitlab.com/get-started/
https://subversion.apache.org/
https://bitbucket.org/product/guides
https://www.bugzilla.org/
https://marketplace.atlassian.com/apps/1211769/xray-test-management-for-jira?tab=overview&hosting=cloud
https://playwright.dev/
https://junit.org/junit5/
https://testng.org/
https://www.jenkins.io/
https://gradle.org/

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 89
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Integrated Pipeline – With Tooling

• Source Control

- Bitbucket, Gitlab

• Issue Tracking System

- Jira, Gitlab

• Build (CI) System

- Gitlab, Jenkins

• Artifact Repository

- Nexus, Artifactory

• Integration Environment

- Custom, IaC with Docker, Ansible, Terraform

• Code Review System

- Most integrate via pull request process

• Monitoring System

- Custom tooling/coding usually needed with

products like Prometheus, Grafana, etc.

• Communication Systems

- ChatOps, Wiki’s, must integrate with other tools

Issue Tracking System

Source
Control

Build (CI) System

Artifact Repository

Integration

Environment

Code Review

System

Monitoring

System

Communication

Systems

Navy Software Testing Strategy

© 2025 Carnegie Mellon University 90
[DISTRIBUTION STATEMENT A] This material has been approved for public release and
unlimited distribution.

Contact Us

	Slide 1: Navy Software Testing Strategy
	Slide 2: Document Markings
	Slide 3: Introduction and Roadmap
	Slide 4: What This Brief Covers
	Slide 5: Framing the Problem
	Slide 6: Key Positive Patterns
	Slide 7: Key Anti-Patterns
	Slide 8: General Testing Facts
	Slide 9: DoD Acquisition Requirements Are Unique
	Slide 10: Case Studies
	Slide 11: Case Study 1: Testing Software/Hardware Contractor Deliverables for Navy Cyber-Physical System
	Slide 12: Initial State of Testing
	Slide 13: Approach: Build Initial Test Workflow
	Slide 14: Introduce Automation Test Pipeline
	Slide 15: Automated Test Pipeline Architecture
	Slide 16: Current State Test Workflow
	Slide 17: Case Study 2: Testing on multiple versions of Windows OS (8, 10, 11)
	Slide 18: Approach used to automate testing
	Slide 19: Lessons Learned
	Slide 20: Testing Strategies for Legacy Systems
	Slide 21: Challenges in Testing Legacy Software
	Slide 22: Effective approaches
	Slide 23: Best Practices
	Slide 24: Testing Strategies for New Systems
	Slide 25: Modern Strategies May Be Adopted Over Time
	Slide 26: Best Practices
	Slide 27: Testing Strategies for Cyber Physical Systems
	Slide 28: Testing with Hardware in the Loop [1/2]
	Slide 29: Testing with Hardware in the Loop [2/2]
	Slide 30: Key Strategies for Introducing Regression Tests [1/2]
	Slide 31: Key Strategies for Introducing Regression Tests [2/2]
	Slide 32: Version Controlled Tests [1/2]
	Slide 33: Version Controlled Tests [2/2]
	Slide 34: Avoid test automation gotchas
	Slide 35: Best Practices in Automated Testing
	Slide 36: Best Practices In Automated Testing
	Slide 37: Functional Testing Automation
	Slide 38: Automated Software Testing Types [1/3]
	Slide 39: Automated Software Testing Types [2/3]
	Slide 40: Automated Software Testing Types [3/3]
	Slide 41: Goals for Agile Process with Automated Testing
	Slide 42: Test Life Cycle
	Slide 43: Test Life Cycle
	Slide 44: Requirements Management: Identification
	Slide 45: Requirements Management: Prioritization
	Slide 46: Requirements Management: Traceability Matrix
	Slide 47: Requirements Management: Version Control
	Slide 48: Requirements Management: Review and Validation
	Slide 49: Test Planning [1/2]
	Slide 50: Test Planning [2/2]
	Slide 51: Test Case Development [1/2]
	Slide 52: Test Case Development [2/2]
	Slide 53: Establishing Test Environments [1/3]
	Slide 54: Establishing Test Environments [2/3]
	Slide 55: Establishing Test Environments [3/3]
	Slide 56: Test Execution [1/2]
	Slide 57: Test Execution [2/2]
	Slide 58: Test Automation Reference Architecture
	Slide 59: Continuous Testing [1/2]
	Slide 60: Continuous Testing [2/2]
	Slide 61: Test Life Cycle summary
	Slide 62: Software Test Tools
	Slide 63: Configuration Management
	Slide 64: Best Practices [1/2]
	Slide 65: Best Practices [2/2]
	Slide 66: Establish Clear Ownership and Boundaries
	Slide 67: Use a Shared CM System with Role-Based Access
	Slide 68: Implement Versioned Test Suites
	Slide 69: Standardize Test Formats and Metadata
	Slide 70: Automate Validation and Verification Processes
	Slide 71: Maintain Baseline or Common Test Environment
	Slide 72: Archive and Trace Test Artifacts
	Slide 73: Define Independent Test Validation Processes
	Slide 74: Regular Communication and Feedback Loops
	Slide 75: Hardware In The Loop Testing Considerations
	Slide 76: HIL Testing
	Slide 77: DevSecOps and Hardware Components
	Slide 78: Hardware-Based Testing
	Slide 79: Development boards and prototypes
	Slide 80: Hardware substitution with API
	Slide 81: Hardware Simulation
	Slide 82: Hybrid Approach
	Slide 83: Diving into Simulation
	Slide 84: Roles And Responsibilities
	Slide 85: Roles and Responsibilities
	Slide 86: Testing roles considerations
	Slide 87: Software Tools
	Slide 88: Software Tools
	Slide 89: Integrated Pipeline – With Tooling
	Slide 90: Contact Us

