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Abstract – Artificial intelligence enabled transportation 

solutions are poised to take center stage across the 

automotive and aerospace industries creating a shift in 

customer expectations and industry practices. From sensor 

fusion and power optimization to adaptive cruising and 

robotaxis, today’s automotive product development cross-

correlates multiple disciplines, such as data science, 

machine learning, and neurocomputing, along with 

reliability, functional safety, and cybersecurity. Combined 

development delivers AI solutions for automotive systems 

that are safe, secure, and reliable, capable of performing in 

safety-critical environments while resisting cybersecurity 

threats. Similar considerations apply to the development of 

aerospace solutions. Artificial intelligence is becoming the 

driving force shaping today’s technologies, global 

economies, the social and cultural environments around the 

world, hence the need to consider the impact, cross-

correlations, and challenges between and within all related 

disciplines. 
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1. INTRODUCTION 

Automotive product implementation encompasses 

automotive reliability, functional safety, cybersecurity and 

artificial intelligence aspects developed systematically within a 

quality management system framework. Like aerospace 

industry requirements, automotive reliability and functional 

safety are of primary importance for mitigating risks stemming 

from the operating mode and operational environment. For 

example, random hardware failures that may occur during 

mission mode due to random causes, such as a radiation burst, 

are of primary focus in automotive and aerospace applications. 

Cybersecurity risks, on the other hand, may arise and may be 

mitigated in relation to threats based on measurable risk. It 

presumes a potential target asset, a disruptive intent, and an 

attack path that must be protected to avoid access to the assets. 

Artificial intelligence can play multiple roles in the context of 

automotive and aerospace applications. It may implement a 

mission function, such as driving autonomously on a highway 

or flying unmanned to a destination, provide a safety 

mechanism such as obstacle identification and avoidance, or 

implement cybersecurity measures such as signature 

identification and dynamic response based on known or 

unknown cybersecurity attack patterns. 

 
Figure 1: V-Model of combined AI, Functional Safety and 

Cybersecurity development lifecycle for automotive development 

process 

Regardless of the scope, artificial intelligence development 

must be coordinated with functional safety and cybersecurity to 

identify common requirements, objectives and resources, and 

potential weaknesses that one aspect of the development may 

bring to the others. Figure 1 illustrates the automotive product 

development lifecycle, including the automotive reliability, 

functional safety, cybersecurity and artificial intelligence 

aspects. This paper is describing cross-correlations between 

relevant disciplines in automotive development, as well as 

potential challenges and mitigation trade-offs when combined 

aspects are part of the development. 

2. AI SYSTEMS 

An AI system is typically defined as a system comprised 

of a pre-processing stage, an AI model stage and a post-

processing stage, receiving input data from various sources 

such as an array of sensors, and outputting data to consumers, 

for executing an AI function. 
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Figure 2: Concept diagram of a fail-safe AI system, adapted from [8] 

Examples of AI systems include perception AI (classifiers, 

content interpreters, translation), generative AI (content 

creation), agentic AI (coding assistant, customer care, patient 

care), physical AI (self-driving cars, UAVs, general robotics, 

space and planetary exploration robots).  

AI systems include AI software components (AI models) 

and supporting conventional SW, and AI HW components (AI 

processors or accelerators) as well as supporting conventional 

HW such as host processors. 

 

 
Figure 3: Typical hierarchy of an AI system, adapted from [8] 

AI systems are developed using SW and HW AI 

technologies to implement the AI method itself, and to provide 

tools and procedures to create the trained AI model. The 

hardware infrastructure implementing AI systems are often 

referred to as hardware-in-the-closed-loop (HiL), whereas the 

outputs of the target AI HW components executing the target 

AI software components influence the HW inputs, and 

hardware-open-loop (HoL), whereas the outputs of the target 

AI HW components executing the target AI software 

components do not influence the HW inputs.  

3. AI SYSTEMS REQUIREMENTS 

Governance initiatives are defining AI development 

requirements for safe, secure and trustworthy AI systems. For 

example, the “Executive Order on the Safe, Secure, and 

Trustworthy Development and Use of Artificial Intelligence” 

[1] provides guidance for the deployment and use of AI 

technologies in the US. In a similar manner European Union 

issued the “EU Artificial Intelligence Act” [2], intended to 

provide clear and up to date AI development and analyses 

requirements to EU constituents. 

Outputs from these initiatives are reflected in development 

and release of normative standards such as NIST-AI-600-

1[7] and ISO/PAS 8800 [8]. Normative standards such as those 

listed in Table 1 may influence and provide relevant guidance 

to industry on what and how to evaluate and collect data 

necessary to build and reinforce AI data models. 

  
Table 1: Relevant standards for governance compliant AI system 

development 

Category Relevant standards 

Safety IEC 61508[3], ISO 26262[4], ISO 

21448[5], ARP4761[21] 

Cybersecurity ISO/IEC 27001[10], ISO/SAE 21434[6] 

AI ISO 42001[11], ISO 22989[9], ISO 

23053[12], ISO 4804[13], ISO 5469[14], 

ISO 8800[8], NIST-AI-600-1[7] 

Reliability IATF 16949[16], AEC-Q100[17], DO-

254[19] 

 

Risk identification and mitigation are accomplished by 

executing risk analyses such as Hazard Analysis and Risk 

Assessment (HARA) for functional safety, Threat Assessment 

and Remediation Analysis (TARA) for cybersecurity, AI Risk 

Assessment (AIRA) for implementation of the AI solution, and 

Reliability Analysis for reliability risk evaluation. 

AI risks are stemming from development and operational 

considerations such as system design, ML/AI algorithms, the 

data utilized for model training, and the actual operating 

conditions and threats that may occur during operation. The 

most common causes are systematic issues stemming from 

incomplete requirements definition, unknown AI system 

limitations, unsuitable model selection and lack of model 

transparency, low data quality and relevance, data bias, model 

performance drift. Random causes such as unintended 

operation beyond technical capabilities and adversarial attacks 

shall also be considered. AI risk can be formulated as a 

combination of probabilistic risk and deterministic risk. 

Functional safety risk associated with random harmful 

events is evaluated based on the probability of exposure and on 

considerations of severity and controllability, being quantified 

by Automotive Safety Integrity Levels [4].   

Cybersecurity risk is evaluated based on the attack path 

analysis, attack feasibility rating and impact rating.  

Reliability risk is based on the probability of failure in time 

of the AI hardware components comprised by the AI system 

infrastructure, under specified operating conditions. 

Thus, a global risk function GR can be defined as a 

combination of AI risk (AIR), functional safety risk (FSR), 

cybersecurity risk (CSR) and reliability risk (RR):  

 
GR = f (AIR, FSR, CSR, RR)  (1) 

whereas f is a function of conditional probabilities that can be 

represented across the space of operating conditions for 

representative use cases. 
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Figure 4: Representation of a combined risk function 

Risk mitigation measures may lead to overlapping 

requirements, complementary requirements and/or 

contradictory requirements. Contradictions between functional 

safety and cybersecurity requirements may arise from: 

o Risk assessment priorities (HARA vs TARA) 
o Handling faults vs security breaches 

o Transparent design vs obfuscation 

o Static design vs dynamic updates 

For example, a functional safety requirement may be that 

the system fails-safe in the event of a random hardware fault, 

typically moving to a safe state such as a power-down/up cycle, 

while the cybersecurity requirements are asking to avoid such 

states, as shutting down the system may be an opportunity for 

attackers to initiate a Denial-of-Service (DoS). 

Such contradictions may be addressed by enhanced 

development methodologies like combined risk management, 

balancing availability, security and AI safety, aligning life-

cycle processes, and by design optimization intended for risk 

reduction. 

In a practical example, considering typical constraints of 

power, speed and precision for AI systems as shown in Table 

2, a risk trade-off can be made by power management 

optimization, while preserving speed and precision.  

 
Table 2: Typical constraints for an AI System 

Constraint Safety Security AI 

Power M L H 

Speed H M H 

Precision H M H 

    

The global risk function after constraints trade-off and 

architectural optimization is illustrated in Figure 5. 

 

 

 
Figure 5: Representation of the combined risk function after trade-off 

optimization 

4. DEVELOPING THE AI SOLUTION 

AI systems are essential for executing complex missions 

and they are integral part of the implementation solutions as 

described in  Table 3. 

 
Table 3:Representative AI applications 

Application Description 

Autonomous 

solutions 

Road vehicles, aircraft, space vehicles 

UAV for 

disaster relief 

and recovery 

Intervention in natural disasters aftermath: 

hurricanes, earthquakes, volcanic eruptions, 

tsunami, drought, wildfires 

Industrial or transportation accidents on ground, 

sea, air 

Humanitarian relief in affected areas 

Planetary and 

space 

exploration 

Ground and flying self-navigating vehicles for 

terrain exploration and mapping, geological and 

geophysical research etc. 

Exploration of space and other planets 

Robotics Industrial, military, medical and civil work  

robots 

 

The most employed AI functions for autonomous solutions 

are the following [13]:  

 

o Image recognition: segmentation, labeling, object 

identification, feature and scene recognition 

o Sensor fusion 

o Simultaneous localization and mapping 

o Predicting future behavior of relevant objects 

o Route planning for safe and lawful driving 

o Minimum risk maneuvering to execute driving plan 

o Communication with other traffic partners 

o Evaluation of nominal performance 

o Safe mode transition and fail-safe degradation 

o Payload delivery  

o Adversarial training 
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The AI system development lifecycle is represented in 

Figure 6. 
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Figure 6: AI system development lifecycle, adapted from [12] 

AI development starts by defining the application scope 

and requirements, identifying what will be modeled and for 

which purpose. The scope may include implementing a mission 

function, a safety or cybersecurity measure, improving 

reliability, optimizing an existing design, creating new 

functions, etc. AI development involves both software and 

hardware. The software development typically implements the 

AI algorithm and creates the AI model, which will execute the 

target tasks and may learn from new data. 

Hardware resources may need to be developed or enhanced 

to support the execution algorithms. High-speed mission 

function solutions sometimes require a direct hardware 

implementation of the AI algorithms, including resources for 

neural network data structures and weight programmability, 

while involving software during the training phase. Both 

software and hardware resources employed by the AI solution 

are subject to functional safety and cybersecurity concerns. 

Hence, cross-correlations and challenges between these aspects 

need to be considered in the design.  

Machine learning and AI are data-driven techniques. 

Therefore, data collection and preparation are of the highest 

importance for training, validation, and testing of the models. 

Thus, data science techniques are to be applied for the 

collection, analysis, and pre-processing of representative 

datasets. In most popular ML/AI applications, such as Large 

Language Models and Generative AI, the models are created 

and optimized based on contextual and relational information 

by processing exceptionally large volumes of data collected 

along significant periods of time. The training of such models, 

featuring hundreds of millions of parameters, takes time and 

resources, making them very expensive. Moreover, data may 

not be sufficiently relevant for the intended application.  

In automotive and aerospace applications, in addition to 

ensuring relevant and unbiased data, the models can be 

enhanced by a process-driven approach which guarantees that 

laws of physics, as well as functional safety and cybersecurity 

requirements are embedded into the model.  

In most of automotive and aerospace applications, processing 

speed is essential. For example, object detection in advanced 

driving assistance systems (ADAS) must be executed within a 

predefined interval to allow for the appropriate avoidance 

reaction, given the range of vehicle’s speed and direction.  

Therefore, various architectures were developed to best fit 

the functional requirements, including timing performance. For 

example, convolutional neural networks (CNN) are optimal for 

image processing, Bayesian regression may be best for 

classification, recursive neural networks (RNN) for time series 

and convolutional recursive neural networks (CRNN) for real-

time scene detection. Architecture optimization is used to 

improve the overall performance by increasing precision and 

accuracy, while not overloading the computational effort so that 

to comply with the processing speed requirements. While there 

are well-known optimization measures, it is preferable to 

develop or adapt the optimization method such that to embed 

physical process laws and requirements specific to the 

application, for better control of results. These may involve 

functional safety and cybersecurity requirements. 

Finally, the loss-function used for the convergence of the 

model toward the expected solution is typically designed based 

on a data-driven approach. At the same time, the loss function 

can be modified to embed physics information, or functional 

safety and cybersecurity aspects, leading to a faster and more 

efficient learning toward the desired enhanced model. Thus, the 

model can be trained with built-in mechanisms for error 

detection and cybersecurity features like intrusion detection, 

anomaly detection, and encryption.  

Model cross-validation is performed to ensure that the 

model can handle safety-critical real-world scenarios, while 

being resistant to cyberthreats, such as injection of adversarial 

data. Penetration testing should be performed on the AI system 

to identify vulnerabilities in its ability to withstand 

unauthorized access to the model and datasets.  

Finding the proper trade-off between the implementation of 

the artificial intelligence solution, and functional safety, 

cybersecurity and reliability measures, is a complex task that 

can be addressed through multidisciplinary risk analysis and 

regression techniques toward an optimum result. 

5. MODEL DEVELOPMENT, DEPLOYMENT AND 

MLOPS  

A typical automotive AI deployment model is made up of 

multiple layers, but in its basic form consists of data generation 

from sensors, in vehicle execution based on model inferencing, 

data transformation in a data center, and processed data delivery 

for AI consumption. The supervised ML process is represented 

in Figure 7.  

  

 
Figure 7: A typical distributed automotive AI deployment model 

This complex environment has the potential to introduce a 

wide and varied threat surface to attackers. Therefore, special 

attention is paid to the model development, training and 

deployment on mobile AI systems, as well as to subsequent AI 

system monitoring, in the context of accomplishing the 
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cybersecurity requirements. This includes over-the-air (OTA) 

model updates resulted from continuous learning based on data 

collected from the AI systems operating in the field. 

Model development takes into consideration specific 

aspects such as dataset quality and structure, development 

environment prepared to meet AI, safety and cybersecurity 

requirements, type of training along the model lifecycle 

(supervised, unsupervised, reinforcement learning), and the 

target endpoint constraints on the edge device where the model 

will be deployed for operation. Model development process 

flow and associated resources are represented in Fig. 8. 

Model deployment on the endpoint takes into consideration 

the actual hardware resources of the target edge AI system, 

including computational power of the AI inference module, size 

of the RAM memory available for model parameters, parallel 

processing capabilities, target system speed and type of 

interfaces available for data input, output and within the 

inference module. Thus, the edge endpoint inference is 

typically much more restrictive than the model development 

environment therefore, model optimization is a necessary step 

for deployment.  

 
Figure 8: A typical supervised ML model development flow, excerpted 

from [12] 

In a practical example, deploying a model for real-time 

applications on edge devices involves a recompilation of the 

model from a common development format such as ONNX, 

PyTorch or TensorFlow, to the target edge inference sub-

system runtime environment. This recompilation may also 

include measures for increasing robustness to adversarial 

attacks and other additional cybersecurity features.  

Deployment can be executed using containerization and 

docking techniques, which can further increase the immunity to 

external attacks.  After deployment, the AI system continues to 

be monitored for performance and cybersecurity indicators 

defined during the development stage. When certain 

performance, safety or cybersecurity KPI thresholds are 

exceeded, updating or re-tuning of the edge AI system may be 

required. This is part of the continuous monitoring, 

maintenance and update activities as part of the MLOps stage 

in the AI system lifecycle. 

 

 

 

 

6. AI INFERENCE 

The model inference is executed on the AI edge system 

hardware to perform the AI tasks. The AI model inference sub-

system represented between pre-processing and post-

processing components in Figure 2, typically consists of an SoC 

that includes the host processor running a Real-Time-

Operating-System (RTOS), the AI acceleration processor 

running the AI model and the associated NN and runtime 

libraries, the shared RAM and the system interface, as shown 

in Figure 9.  The sub-system includes hardware and software 

AI and non-AI components that are subject to safety, 

cybersecurity, reliability and AI governance requirements.  

 

RTOS
Shared 
RAM NN Libraries 

Runtime Libraries

Host 
Processor

AI Co-processor

System Interface

AI Models

 
Figure 9: AI model inference sub-system with associated software 

stacks 

Such a sub-system enables the edge AI device to run 

complex models such as LLM transformer, vision transformers, 

GenAI diffusion models and Multi-Modal-Models (MMM) that 

can process information from multiple sources of information 

simultaneously. For example, an MMM can process data from 

depth or stereo cameras, from LIDAR sensors, from 

microphones and from ultrasound sensors at the same time. 

Depending on the size of the shared memory and type of AI co-

processor, an edge AI inference SoC can run models having 

between 1 billion and 7 billion parameters. 

The AI inference sub-system requirements for automotive, 

aerospace and government applications, as resulting from 

governance measures, should consider the following standards, 

among others:  

o Safety of Intended Functionality:  ISO 21448[5] 

o Functional safety to mitigate random hardware faults: 

ISO 26262[4], ARP4761[21] 

o Cybersecurity: ISO 21434[6], DO-178C[18] 

o Reliability: IATF 16949[16], AEC-Q100[17], DO-

254[19] 

o AI safety, security and trustworthiness: ISO 

42001[11], ISO 8800[8], NIST 600-AI-600-1[7] 

These requirements are accomplished by implementing 

specific measures such as safety mechanisms, cybersecurity 

mechanisms, AI solutions for enhanced accuracy, precision, 

and recall, for model transparency and non-bias, and 

mechanisms for increased robustness to adversarial attacks. 

Implementation trade-offs for conflicting measures are 

presented in Table 4. 
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Table 4: Cross-correlations and trade-off examples 

Measure Safety 

Cyber-

security AI  Trade-off 

Dual-core 

lockstep 

(+) 

Increased 

diagnostic 

coverage 

(ASIL D) 

(-) 

Double 

the 

number 

of 

attack 

paths 

(-) 

Increasing 

consumed 

power 

Duplicate 

blocks 

instead of 

entire core 

Increase 

encryption 

length from 

64-bit to 

128-bit 

(-) 

Increased 

area causes 

higher 

block 

failure rate 

(+) 

Harder 

to break 

(+) Higher 

resilience 

to 

adversarial 

attack 

Implement 

BIST at 

start-up 

Power-

down safe 

state 

(+) Start-up 

enables 

running 

latent faults 

safety 

mechanism 

(-) 

Power 

down/ 

up may 

enable 

DoS 

attack 

(-) Long 

start-up 

sequence 

for loading 

the model 

Implement 

a reset safe-

state 

instead of 

power-

down 

7. CONCLUSIONS 

Combining AI, functional safety, cybersecurity and 

reliability requirements in automotive, aerospace and 

government applications development is of critical importance 

for creating robust, safe and secure AI-driven automotive 

systems. Cybersecurity measures are needed for preventing 

unauthorized access or attacks that could compromise the safety 

and functionality of both AI models and vehicle AI systems. 

Datasets and models are cybersecurity assets that must be 

protected using cybersecurity mechanisms such as encryption 

keys, typically generated by root-of-trust or true random 

number generators. From the functional safety and reliability 

perspective, the hardware supporting the AI models and 

algorithms may be subject to random failures therefore, safety 

measures and reliability enhancements need to be considered 

for addressing the associated risks. The more complex the 

model and more hardware resources employed, the higher the 

probability of random hardware faults, leading to a decrease in 

the functional safety performance of the system. At the same 

time, adding more safety mechanisms may increase the 

vulnerability to cybersecurity attacks. On the other hand, 

cybersecurity mechanisms may often challenge the safety 

requirements, for example by executing OTA software updates 

on software units that are safety relevant. Such updates must be 

verified for functional safety compliance prior to being 

deployed on the edge devices. AI systems include all these 

safety and cybersecurity aspects, as well as other specific 

verifications such as those related to the stability of the model 

in time.  

In conclusion, AI development involves implementation 

solutions that often require trade-offs and optimizations to cope 

with systematic challenges and with a wide range of unexpected 

situations during field operation. The complexity of such 

development is addressed by a combination of development 

processes working in synergy and by using special tools and 

methodologies.   
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