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Abstract

The major objective of the project is to develop a mathematical and numerical frame-
work for scientific prediction and discovery in the realm of big data. Our goal is to
develop a set of mathematical and numerical tools that are applicable to big data and subse-
quently take advantage of the potential and opportunities offered by big data. More specifically,
we aim at developing numerical algorithms to discover the physical and mathematical laws behind
observational data and create reliable predictive models for the unknown systems.

During the course of the project, the PI and his team made tremendous progresses on data
driven discovery and prediction. Moreover, modern machine learning (ML) tools such as deep
neural network (DNN) were adopted during the project and enabled us to develop highly flexible
and powerful algorithms for data driven modeling. The most notable outcomes of the project
include the following.

e A novel framework of flow map learning (FML) for unknown dynamical systems. This
establishes a rigorous mathematical foundation of data driven modeling of dynamical sys-
tems. Learning in the form of flow map enables us to design rigorous and flexible numerical
predictive tools.

e Learning parametric systems. The FML is extended to unknown dynamical systems with
parametric dependence. The resulting learning algorithm is able to model the parameter
dependence of the system and create an effective model for UQ analysis.

e Learning non-autonomous systems. This is a significant extension of the FML methodology
to learning unknown dynamical systems with time dependent inputs. By employing a
local approximation technique, the modified FML method is able to accurately predict
the unknown system subject to external time dependent inputs that are never in training
data.

e Learning partially observed systems. This is a development to address a practical need
— data are often not available for every state variables. Instead, only a few variables
can be observed. We developed a DNN learning method, driven by rigorous mathematical
formulation, to effectively learn and model the unknown system for the observed variables.

e Learning partial differential equation (PDE) system. The FML for dynamical systems is
extended to learning of unknown PDE. Two approaches are developed: learning in modal
space and in nodal space. While the modal space learning is mathematically appealing,
the nodal space learning is more practical and requires a specialized DNN structure.

The project has resulted in publication of 20 high quality journal papers. It has supported
two post-doctoral researchers, one of whom finished the term during the project and took a
tenure track professor position in another university.
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1 Project Report Overview

The project started on May 15, 2018 and ended on May 14, 2022. During the span of the project, the
PI and his supporting team successfully accomplished, and in many fronts significantly exceeded,
all the major goals of the project.

1.1 Project Objectives

The major objective of the project is to develop a mathematical and numerical framework for
scientific prediction and discovery in the realm of big data. More specifically, we aim at developing
numerical algorithms to discover the physical and mathematical laws behind observational data and
create reliable predictive models for the unknown systems. The major outcomes of the project
consist of the following:

e Establishment of a novel framework for learning of unknown laws behind data. The framework
employs operator learning in the form of flow map — flow map learning (FML). It is a major
advancement in the field of data driven learning, and has firmly established itself as a rigorous,
robust, and exceptionally powerful numerical strategy.

e Development of DNN (deep neural network) algorithms for flow map learning (FML) for prac-
tical systems involving unknown parameters, unknown external controls, missing variables, or
hidden parameters. These developments significantly enhance the applicability of FML meth-
ods and enable practitioners to create highly accurate models for unknown complex systems,
such as chaotic systems, even when data are missing.

1.2 Accomplishment Summary

During the course of the project, the research team, led by PI Dongbin Xiu, has conducted vigorous
research revolving around the major objectives of the project. Substantial amount of progresses
have been made, and all research goals are met, or even exceeded in many fronts. Our specific
accomplishments include the following.

o Framework for flow map learning (FML) of unknown dynamical systems. We developed
FML as a novel numerical framework for learning the laws behind dynamical data. Learn-
ing through flow map serves as a rigorous mathematical foundation. Moreover, it greatly
enhances the learning ability of the method, as in practical systems the flow maps are often
of considerably simpler form, despite the complexity of the solutions. Consequently, FML
allows us to model and learn dynamical systems of much higher complexity (compared to
other existing data driven learning methods).

e Learning parametric systems for UQ. We extended the FML method to learning unknown
systems subject to uncertain parameters. By incorporating the parametric dependence in
the DNN structure, the resulting DNN FML method is able to accurately predict the system
behavior with different parameters. This enables us to conduct parametric study of the
dynamics, and more importantly, UQ (uncertainty analysis) of the unknown system.

e Learning non-autonomous systems. Non-autonomous systems, i.e., systems subject to exter-
nal inputs, remained a roadblock for effective learning. The difficulty was overcome by our
extension of FML for non-autonomous systems. To account for the various kinds of external
inputs that are not in training data, we developed a local approximation and parameteriza-
tion method, in conjunction with FML, to facilitiate not only the learning of the system but
also the prediction of the system for future time when the external inputs can be completely
different.

Dongbin Xiu (OSU) 2
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o Systems with missing variables. For most practical systems, it is impossible to require mod-
elers to possess data for all the system variables. Consequently, most modeling and learning
tasks face data sets with (many) missing variables. Motivated by the celebrated Mori-Zwanzig
formulation, we developed memory-based FML to learn and model unknown systems with
missing variables. The resulting FML DNN structure possesses remarkable learning abili-
ties — it is capable of accurately model and predict the dynamical behaviors of the observed
variables, even though they do not form a mathematically close system.

e Learning unknown partial differential equations (PDEs). The FML framework was also ex-
tended to the learning of PDEs. Compared to dynamical systems (which are finite dimen-
sional), PDEs are of infinite dimensions. Non-trivial extensions of the FML framework into
infinte dimensions were developed, and new DNN structures were proposed. The resulting
learning method is capable of accurately prediction PDE systems with shocks, even when the
training data sets contain no shocks.

2 Accomplishments

We now present a technical summary of the accomplishments. To unify notation, let us consider a
system of ordinary differential equations (ODEs),

dx
— =f(x), x(0) = xq, 1
Yo, x(0) =0 1)
where x € R"™ are the state variables. We assume that the form of the governing equations, which
manisfests itself via f : R” — R™, is unknown. We assume that trajectory data are available for
the state observables x. Let Np be the total number of such observed trajectories. For each i-th
trajectory, we have

X<i>:{x(t§j))}, k=1,... KD =1, Np 2)

where {t,(f)} are discrete time instances at which the data are available, and K is the total number
of data in the i-th trajectory. For notational convenience, we shall assume a constance time step

A=) ), Wk=1,... K9 -1, i=1,... Np. (3)

We then seek to develop a numerical model for the evolution dynamics of x(t), without knowing
the true model (1).

2.1 Flow Map Learning (FML) Framework

Compared to the existing learning approaches in the literature, the flow map learning (FML)
method developed in [7] is significantly more flexible in its learning ability and mathematically
rigorous in its theoretical foundation. For the trajectory data (2), we can re-group the data into
pairs of two adjacent time instances. Since for an autonomous system like (1), time ¢ can be
arbitrarily shifted and only the relative time difference is relevant. We can then define the data set
as

{x;(0),x;(A)}, J=1....J, (4)
where J the total number of such data pairs.

Dongbin Xiu (OSU) 3
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On the other hand, the true (and unknown) system (1) defines a flow map ® : R" — R", such
that x(s1) = ®5,_s,(x(s0)). We then have

= [In + ¥ ()] (x(0)),

where I, is the identity matrix of size n x n, and for any x € R™,

Based on (5), we proposed in [7] to use residual network (ResNet)to model the system. The ResNet
has a structure shown in Fig. 1 and defines a map

y* = [, + N] (y'"), (6)

where N : R" — R” is the operator corresponding to a fully connected deep neural network. Upon
using the data set (4), the ResNet (6) can be trained to approximate the dynamics (5), with the
deep network operator N ~ W.

Detailed | hidden layer 1 |

architecture H
ResNet | hidden layer M |

Fig. 1: Schematic of the ResNet structure for one-step approximation.

identity

2.1.1 An Example of ResNet Learning

As an example of the FML learning, we consider a system of nonlinear differential-algebraic equa-
tions (DAE), which are used to model a genetic toggle switch in Escherichia coli ([3]). It is
composed of two repressors and two constitutive promoters, where each promoter is inhibited by
the represssor that is transcribed by the opposing promoter. The system of equations are as follows,

(631

1 = 1+x§ — T,
To = 1345 — T2,
_ 1
% = O+IPTGI/K)"
Dongbin Xiu (OSU) 4
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Here we use the system as the unknown truth and generate synthetic training data. The FML DNN
structure is trained on the synthetic training to model the dynamics of this unknown true system.
We also use the true system to generate validation date to examine the prediction accuracy of the
DNN predictions. In Fig. 2, the predictions by the learned DNN model are shown against the true
solutions. We observe that the DNN model produces excellent accuracy in its predictions. Such
results with high accuracy have been observed for many systems and reported in [7].
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Fig. 2: ResNet FML of Differential-Algebraic system. Left: x; and x5 prediction; Right: phase
portrait

2.2 Learning Parametric Systems and UQ

Let us consider a parameterized system
d
Sx(tia) = flx@),  x(0) =, (7)

where x C R? are state variables and o = (a1y...,0p) € I C R¢ are system parameters. We are
interested in the solution behavior with respect to varying parameters, while having no knowledge
of the governing equations (7). In the context of uncertainty quantification (UQ), the parameters
are equipped with a probability measure over I,. We are interested in understanding the various
solution statistics with respect to the input . Our goal is to create an accurate numerical model
for the system and conduct UQ analysis, using only data of the state variable x and the parameters
a.

The ResNet FML method for the system (1) can be extended to readily incorporate the param-
eters into the network. Moreover, in many practical problems, the time steps in the data set are
not a constant. Variable time step can also be incorporated in the DNN structure as an additional
input. The resulting DNN structure is shown in Fig. 3. Upon successful training of the DNN, the
trained DNN serves as a parameterized model for the unknown system (7). We can conduct system
prediction via iterative use of the model. Let §; € I5 be a sequence of time steps and xg be a given
initial condition. Then, for any given system parameter o« € I, that may not be in the training
data, we have a predictive model

ﬁ(to;a) = X,
R(tpsr; @) = Kty @) + N(X(ty; ), @, 653 ©%), (8)
tk+1:tk+6k7 k=0,1,....

Dongbin Xiu (OSU) 5
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A~

N

Fig. 3: Structure of DNN for learning systems subject to parameters.

This serves as a predictive model for the true solution x(¢; o, x¢) of the unknown system (7) at the
time instances t € {tx,k =0,1,...}, for any given parameter value ax and initial condition xg.

When the predictive model (8). is learned and constructed from the data, uncertainty quan-
tification (UQ) can be readily carried out. Let po be the probability density the parameters a.
Statistical information of the true solution x(¢; a¢) of (7) can approximated by applying the required
statistical analysis on the DNN model (8). For example, the mean and variance of the solution can
be approximated as

Eafx(t; )] ~ /1 %(t:y)paly) dy,
- (9)
Varlx] ~ /, &(t;y) - EalR(E V) paly) dy.

The integrals of X can be further approximated sampling based method, e.g., Monte Carlo or
quadratue rule.
More details can be found in [5], where the method was first developed by the PI’s team.

2.2.1 UQ Modeling Example: Cell Signaling Cascade

For demonstration, let us consider modeling of autocrine cell-signaling loop. The true (and un-
known) model is as follows.

delp I Vmax71(1 - elp) Vmax,Qelp

dt 1+ Gesp K1+ (1 —e1p) Kma+ew

degp _ Vmax,3€1p(1 — €2p)  Vimax4€2p 10)
dt Km73 + (1 - 62}7) Km,4 + €2p’
d63p _ VmaX:5€2p(1 _ e3p) . Vmax,663p

dt — Kns+(1—e3) Kmng+es

where the state variables eqp, €2y, and e3, denote the dimensionless concentrations of the active
form of the enzymes, and K, 1-6, Vinax,1—6, and G are random parameters, along with a tuning

Dongbin Xiu (OSU) 6
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parameter I € [0,1.5]. For the 13 random parameters, we set their mean values as Ky, 1—¢ = 0.2,
Vimax,1 = 0.5, Vimax2 = 0.15, Vipaxz = 0.15, Vinaxa = 0.15, Viaxs = 0.25, Vipaxe = 0.05, and
G = 2 and with £10% uniform distribution around the mean values. In Fig. 4, we present the
approximated mean and variance of the state variables. We observe that the DNN predictive model
produces highly accurate predictions when compared to the truth for such long-time simulation.

2.3 Modeling of Non-autonomous Systems

Our next significant advancement is the modeling of non-autonomous system. The is an non-trivial
extension of the FML framework for practical systems under external excitations. Let us consider

Ex(t) = £0x7(1),

x(0) = xo,

(11)

where x € R? are state variables and 7(t) is a known time-dependent input. Two challenges are
present for the modeling of such a system: (1) there is an explicit dependence on the time variable ¢;
and (2) no matter how rich the training data set is, the excitation y(¢) in the prediction can always
be drastically different at a future time. Consequently, long-term system predictions are always
outside the time domain and excitation signals covered by the training data. The straightforward
learning methods will always fail after certain time during the prediction.

2.3.1 Local Parameterization and DNN Structure

To circumvent to challenges, we developed a localized learning method that is capable of prediction
the solution for arbitrarily long time and under arbitrary excitation ([6]). The approach consists
of the following steps: (1) parameterizing the excitation ~y(¢) in the training data locally (in time);
(2) decomposing the dynamical system into a modified system comprising of a sequence of local
systems; and (3) learning of the parameterized local systems. More specifically, for each time
interval [t,,tp+1], n=0,...,N — 1, with 6, = t41 — tn,

X(tni1) = X(tn) + / " Bx(s), 7(s))ds

- (12)
= x(ta) + [ £t + 7). 70 + )i
0
We then construct a local parameterization for the excitation locally ~(t),
n
Tn(TiTn) =) _Aibj(T) m Aty +7), T €[0,5,], (13)
j=1
where {b;(7),j =1,...,np} is a set of prescribed analytical basis functions and
r, = (;Y\rlwa;)/\;lb) € R™ (14)

are the basis coefficients parameterizing the local input v(¢) in [ty tn41]. Over one time step, many
methods can be used to accurately parameterize ~, e.g., low-degree polynomials. We can then
define a global parameterized input

N-1
FED) = Fnlt = to; T)lje, 4,00 (1) (15)
n=0
Dongbin Xiu (OSU) 7
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Fig. 4: Mean (left column) and variance (right column) of the predicted DNN results (blue), along
with the truth from (10).

where
T = {T,} N} e RV*m (16)

Dongbin Xiu (OSU) 8
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Xin
N

Fig. 5: DNN structure for non-autonomous systems.

is global parameter set for ¥(¢), and I4 is indicator function satisfying, for a set A, [4(z) = 1 if
x € A and 0 otherwise.
We now define a modified system, corresponding to the true (unknown) system (11), as follows,

SX() = EEAGT))

x(0) = xo,

(17)

where 7(¢;T) is the globally parameterized input defined in (15). Note that when the system
input (t) is already known or given in a parametric form, i.e. J(t) = (t), the modified system
(17) is equivalent to the original system (7). When the parameterized process ¥(¢) needs to be
numerically constructed, the modified system (17) becomes an approximation to the true system
(7). The approximation accuracy obviously depends on the accuracy in ¥(t) ~ v(t). For the
modified system, the following results holds true for its solution evolution.

LEMMA: For the system (17), there exists a function gg :R% x R™ x R — R?, which depends
on f, such that for any time interval [t,,, t,41], the solution of (17) satisfies

K(tns1) = X(tn) + G(X(tn), Tnydn), n=0,...,N—1, (18)

where 9, = t,4+1 — t, and I',, is the local parameter set (14) for the locally parameterized input

Yn(t) (13).
This result thus indicates that a DNN model with a structure in Fig. 5 is able to learn the
solution evolution.

2.3.2 Learned Model and System Prediction

Upon satisfactory training of the network parameter using the DNN in Fig. 5, we obtain a trained
network model for the unknown modified system (17)

Xout = N(Xin; ©%) = [T+ N(50")](Xin)- (19)
Dongbin Xiu (OSU) 9
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For system prediction with a new excitation (), let
Xin = [X(tn); | 671]

be a concatenated vector consisting of the state variable at t,,, I';, the parameter vector for the local
parameterization of the external input between [t,,t,+1], and &, = t;41 — t,. Then, the trained
model produces a one-step evolution of the solution

R(tn1) = X(tn) + N(x(tn), T, ). (20)

Upon applying (20) recursively, we obtain a network model for predicting the system states of
the unknown non-autonomous system (7). For a given initial condition xg and external input ~(¢),

%(to) = X0,
X(tnt1) = X(tn) + N(X(tn), T, 0n), (21)
tn+1:tn+5n7 n:O,...,N—l,

where T',, are the parameters in the local parameterization of (¢) in the time interval [t,, t,11].

2.3.3 Non-autonomous System Example: PDE Heat Equation with Source

We consider an unknown PDE — a heat equation with a source term,

U = Ugg + q(t,z), x€][0,1],
u(0,z) = up(x), (22)
u(t,0) =u(t,1) =0,

where ¢(t,x) is the source term varying in both space and time and is set as

_(a—pw)?

alt,z) = a(t)e”

Here «(t) is its time varying amplitude and parameter p and o determine its the spatial profile.
The DNN modeling of the system is shown in Fig. 6. We observe that the solution profiles and
contours produced by the DNN model exhibit excellent accuracy against the true solutions.

2.4 Systems with Missing Variables

Our next major breakthrough is made on the front of modeling more practical systems [2]. That
is, for many problems, one does not have data for all the system variables. Let x = (z; w) be the
state variables for the full system, where z € R? is the subset of the state variables with available
data, and w € R"? is the unobserved subset of the state variables. Our goal is to construct an
effective model for the observed variables z. Note that such a model does not exist mathematically,
as the system is closed for the complete set of variables x but not for the subset z. (Unless the z
and w are decoupled, which results in a trivial system where z and w are independent from each
other.)

Dongbin Xiu (OSU) 10
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Fig. 6: Unknown heat equation with source: system prediction of (22) with a(t) =¢— [t|, p =1,
and o = 0.5. Comparison between the predictions by the DNN model and the reference solution.

2.4.1 Discrete Approximate Mori-Zwanzig Formulation

The celebrated Mori-Zwanzig formulation ([4], [9]) states that a system of equations for the observ-
ables z exist, at least formally, in the form of the generalized Langevin equation,

t
%z(t) =R(z(t)) + /0 K(z(t — ), s)ds + F(t,x0). (23)
The first term R depends only on the observables z at the current time and is Markovian. The
second term, known as the memory, depends on z at all time, from the intial time s = 0 to the
current time s = t, through a memory kernel K. The last term is called orthogonal dynamics,
which depends on the unknown initial condition of the entire variable x(0) and is treated as noise.
Note that this formulation is an exact representation of the dynamics of the observed variables z.
The presence of the memory term makes the system non-autonomous and induces computational
challenges. Note that the MZ equation exists only formally, as the terms R and K are unknown.

We make a basic assumption in the memory integral of the Mori-Zwanzig formulation (23).
That is, we assume the memory kernel K decays over time, i.e.,

Kzt —s)s) N ass A (24)

Dongbin Xiu (OSU) 11
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2,

zin

N

Fig. 7: Tllustration of the memory based DNN for learning systems with missing variables. (Memory
step nys = 2 for illustration.)

and becomes negligible after an effective memory length Th; > 0. Consequently, we define an
approximate Mori-Zwanzig (AMZ) system

d T

&i(t) =R(z(t)) + K(z(t — s), s)ds. (25)

0
Moreover, we assume the finite integral can be approximated via a stencil, in the spirit of numerical
integration. That is, let z,, = z(¢,) be the solution at time ¢, = nA over a constant time step A,
there exists a function M such that
T

’M(in_nM, ey Zp—1,Zn) — K(z(ty, — s),s)ds
0

< n(tn;TManM)a (26)

where 77 > 0 is the error. We then define a discrete approximate Mori-Zwanzig (d-AMZ) equation,

d_

720 = RE@))l—y, + M(@Znnyy, - En1,%0), (27)

t=tn

where M is defined in (26). Obviously, this is an approximation to the AMZ (25) at time level
t = t,. Although R and M on the right-hand-side remain unknown, the DAMZ effectively defines
a discrete autonomous system with memory terms. A DNN structure in Fig. 7 thus becomes a
direct realization of such a flow map. With sufficient trajectory data, such a DNN map can be
readily trained and learned. The learned DNN thus defines a predictive model for the unknown
dynamical system for the observed variables z,

{Zn—H :Zn+N(Zn>Zn—1>~"7Zn—nM)a n > ny, (28)

Zn, = z(ty), n=20,....,ny — L.

With njs initial data on z, one can iteratively apply the network model to predict the evolution of
z at later times.
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Fig. 8: Prediction errors for the slow variables in the chaotic system (29). The DNN model exhibits

smaller and much more stable errors over the long-term prediction, than the homogenized system
(30).

2.4.2 Learning Missing Variable System: Chaotic System

We now consider a nonlinear chaotic system

T1 = —T9 — T3,
. 1

To = X1 + T2,
R (29)
T3 =% +y — dx3,

) — Yy r1T2
=4+ EE

where € > 0 is a small parameter. In this example, we choose the observed variables to be z =
(21, xa, .%'3>T, which are the slow variables of the system, and let the fast variable y be the unobserved
variable. Note that for this system, there exists a homogenized system for the slow variables
(mly x2, .’IJ3>,

1 = —xg — T3,

by = 5 (30)

Z2 T+ 51'27

T3 = % + x3(x1 — 5).

This homogenized system is a good approximation for the true system only when € < 1. Here we
will construct NN models for the reduced variables z and compare the prediction results against
the true solution of (29), as well as those obtained by the reduced system (30). We set € = 0.01,
in which case the homogenized system (30) is considered an accurate approximation of the true
system.

The results for long-term prediction of the chaotic system are shown in Fig. 8. We observe
that the errors in the homogenized system, which is considered to be accurate, grow over time.
Meanwhile, the errors by the DNN predictions are noticeably smaller, and more importantly, stay
bounded and stable for the long-term prediction. This clearly demonstrate the accuracy and su-
periority of the DNN model. The long-term predictions of the state variables z; are shown in
Fig. 9, for three arbitrarily chosen initial conditions. Again, we observe the DNN predictions are
noticeably more accurate than the homogenized system (labeled as “Reference”).
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Fig. 9: Long-term model prediction of z; by the DNN model, the homogenized system (30) (labeled

“Reference”),
Yet another major extension of the FML methodology is its application to learning unknown PDEs.

Let us consider an autonomous time-dependent PDE,
PDE operator and boundary condition operator, respectively.

2.5 Learning of PDE Systems
PDE is unknown.

initial conditions.
where Q C R?,
Dongbin Xiu (OSU)
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We assume data of the state variable u are available over a set of nodal points, or grids,
Xy ={x1,...,zy} CQ,
and by using vector notiation, we write
u(t) = (u(zy,t),...,u(zy, )T

Also, the data are only available at certain discrete time instances, resulting in so-called snapshots
of the solution

u(t§k))’ jzlv"'ae(k)a kzl""7NtTaj‘

Here the superscript k& denotes the k-th “trajectory”, which implies all £(*) snapshots are evolved
from the same (unknown) initial state, and Ny.q; denotes the total number of such “trajectories”.
We then group the solution snapshots into pairs at two consecutive time instances,

D), a@®))), =1, 0% 1 k=1,..., Nygj

(u(t j+1

(
J

Our goal is to construct an accurate approximation of the evolution/dynamics of the unknown
governing equation (31) via the snapshot data. Once the approximation is constructed, it can serve
as a predictive model to provide prediction and analysis of the unknown PDE system.

2.5.1 Learning in Modal Space

In [8], the flow-map based deep learning method was extended to PDE learning. The key is to
conduct the learning in modal space, i.e., generalized Fourier space. Let {b;(x), j =1,..., Ny} be
a basis in the physical domain 2. The solution can be expressed as as a finite-term series

Ny
u(w,0) = 3 i (Oby(0),

where (t) = [@1(t), . .., 0, (t)]7 are the expansion coefficients. Thus there exists a system of ODEs
for the expansion coefficients, in the form of

da

— =f(a).

o = @)
If the governing PDE equation is known, such a system for G can be derived via a numerical
approximation technique, e.g., Galerkin method. When the governing PDE is unknown, the system
for @1 is unknown as well. When solution data are available, this unknown ODE system can be
learned in the modal space by extending flow-map based method from [7]. Details of the modal

space PDE learning, including its proper mathematical formulation and data processing procedure,
can be found in [8].

2.5.2 Learning in Physical Space

A more practical modeling scenario is to learn the unknown PDE when data are available in the
physical space, as nodal values on a set of grids. The noval learning approach was developed in
[1]. Without loss of generality, we consider a p-th order autonomous PDE in the following general
form,

up = L(u, oWy, ... a(P)u), p>1, (32)
Dongbin Xiu (OSU) 15
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where, for any 1 < m < p,
om) — {001 -+~ 90¢ : |a| = m}.

Note that for multi-dimensional PDE with d > 1, each 8! represents multiple partial derivative
operators. Also, u = 0(®u. Without considering boundary conditions, we assume the PDE (32)
(1) is well-posed; and (2) has finite number Np > p of partial derivative terms.

We assume that when the PDE (32) is known, it can be approximated by a one-step Euler for-
ward type explicit numerical scheme with sufficiently small local truncation error. More specifically,
let

Vil = vk L At (VE), k=0,..., K1, (33)
be the numerical scheme, where vk, = (v(z1,t*),... v(zy,t*))T is the numerical solution over Xy

at time ¥, and ¥ is the incremental function.

PROPOSITION: Under the assumption that the PDE (32) admits the Euler forward explicit nu-
merical method (33), there exists a set of functions {F; : RN — RY i =1,...,J}, J > 1, and an
iterative scheme

vﬁ4:v%+Arﬂ4puﬁ@,ngw%ﬂ, k=0,...,K -1, (34)

where M is a (nonlinear) function operated component-by-component, such that for sufficiently
large J, the exact solution of (32) satisfies

ubtl = uk 4+ At (M [Fl(uﬁi,), . ,FJ(uﬂfV)] + nﬁ@“) . k=0,... K1, (35)

where |[n%|| < e(Xn, At), the local truncation error of the Euler method (33), Vk.
This result motivates a DNN structure for learning PDE in physical space. The DNN structure
is illustrated in Fig. 10. It consists of the following components:

Disassembly block: n,, X n; X J
Output: N

Assembly layer: 1 X n, X J

(X )
0000 =
000

0
00
B0

—O
Ik
| |
O
O

Fig. 10: The basic DNN structure.

e Input layer, where the number of neurons is IV, the dimensionality of u.

Dongbin Xiu (OSU) 16

DISTRIBUTION A: Distribution approved for public release



FA9550-22-1-0011 Final Report

e Disassembly block. It has J > 1 fully connected FNNs “in parallel”, where each FNN has
width n,, and depth ng and receives inputs from the input layer. As illustrated in Figure 10,
the disassembly block thus creates a 3-dimensional tensor structure with dimension n,, xngxJ,
where J shall be referred to as the “thickness” of the disassembly block hereafter. The output
layers of the disassembly block create a matrix structure of n,, x J, spanning the width and
thickness directions of the block.

e Assembly layer. It is a standard fully connected FNN, with width J and depth n,. It operates
along the thickness direction of the disassembly block. It receives input from one of the “rows”
of the disassembly block output matrix, whose size is n,, x J, and produces a scalar output.
This is repeated for each of the n,, rows of the disassembly output matrix and produces an
output vector of n,,. (In other words, one can also view the assembly layer as a block of n,,
identical FNNs, i.e., with shared parameters, stacked vertically.)

e Output layer, where the number of neurons is N, the dimensionality of u. The output layer
is mapped from the output of the assembly layer, whose dimension is n,,. The input layer is
re-introduced before the final output, in the same manner of residual network (ResNet).

Once trained, we obtain a predictive model over the grid set X for the underlying unknown
PDE. For an arbitrarily given initial condition uy(0) over the grid Xy, we have

V?\/ = uN(O)>

(36)
Vi N(vF) = vk + F [A(Nl(vﬁ,), o ,NJ(VQ))} . k=0,....
2.5.3 Inviscid Burgers’ Equation
We now consider inviscid Burgers’ equation with 2m-periodic boundary condition,
ou 0 (1,
eI (e =0 - 37
8t+8x<2u) , X € [-m,m], (37)

The training data are generated by solving the equation using a high-resolution numerical solver
(Fourier collocation), by using arbitrary finite Fourier series and solving for one time step. Thus,
all the training data are smooth functions. It is remarkably to emphasize that the learned DNN
model, which never “sees” jump solution, produces accurate prediction and correctly generate shock
solution at the proper time, as shown in Fig. 11.

2.5.4 2D PDE on Unstructured Grid

We now consider a two-dimensional advection-diffusion equation

@—FV-(au):V-(ﬂVu)
ot
on an unstructured grid over domain (z,y) € [—1, 1]x[—1, 1] with zero Dirichlet boundary condition.
The transport velocity field is set as a(z,y) = (y, —z)T, and the viscosity is set as k = 5 x 1073.
The unstructured grids are shown in Figure 12. They consist of 200 points in the interior
(—=1,1) x (—=1,1), 8 points along each edge (resulting 32 points over the edges), and the 4 corner
points. The interior points are generated using 2D Sobol sequence in [0, 7] x [0, 7], followed by
cosine transformation. The edge points are generated by uniform random distribution in (0, ),
followed by cosine transformation.
The numerical prediction of the trained DNN model are shown in Fig. 13. We observe excellent
agreement between the DNN predictions and the true solutions.
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X X
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X X

Fig. 11: Inviscid Burgers’ equation. Comparison of DNN model prediction and reference solution.
Left to right, up to bottom. Note in this case shock develops at t = 2.

3 Project Summary

The project resulted in a systematic development of data driven modeling of unknown systems
— FML (flow map learning). The FML approach was established on a rigorous mathematical
foundation and extended to learning and modeling of a set of progressively more practical situations.
These include how to learn and model systems when only partial observation is available, when
parameters are missing, and with unknown partial differential operators.

The project has partially funded two post-doc researchers and resulted in 20 high quality journal
papers:
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Fig. 13: 2D advection-diffusion over unstructured grids: Comparison of DNN model prediction (left
column) and reference solution (right column).
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