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T
he U.S. Department of the Air Force (DAF) has begun to develop and field artificial intel-
ligence (AI) and machine learning (ML) systems for myriad mission areas and support 
functions, including human resource management (HRM). This report describes an ML 
decision-support tool to summarize the information in officer performance reports (OPRs) 

and other narrative-style documents to help the HRM system make personnel decisions more effec-
tively, more efficiently, and in better alignment with the DAF’s strategic goals. 

Background

The latest data from the McKinsey 
Global Survey on Artificial Intelligence 
show that private-sector companies 
have continued the march toward 
greater adoption of AI, especially 
for optimizing services or enhanc-
ing product offerings (Chui et al., 
2021). However, the same survey 
shows that AI adoption in the field 
of human resources (HR) is still rela-
tively rare. Further, the percentage of 
companies that use AI to optimize 
talent management processes, such 
as those associated with recruiting or 
retention, declined from 10 percent 
to 8 percent between the 2020 and 

KEY FINDINGS
	■ Department of the Air Force analysts can rapidly develop simple 

models relating key text in officer records to past decisions. The 
most-accessible approaches break the text into individual terms, 
index the records according to which terms they contain, fit a 
predictive model of the past decisions, and then create decision 
inputs from the models. We demonstrate these steps through our 
development process for PReSS. 

	■ The constrained language used in officer performance 
reports makes them amenable to natural language processing 
approaches, as shown by the fact that simple models with mini-
mal preprocessing and tuning achieved high levels of accuracy.

	■ As compared with state-of-the-art machine learning approaches 
(i.e., deep learning), simple linear models based on the presence 
or absence of key terms achieve similar levels of predictive perfor-
mance but have the advantage of being inherently interpretable.

	■ Key words and phrases that models base predictions on coincide 
with statements recognizable to expert raters.
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2021 surveys, while those using AI for performance 
management increased marginally, from 7 percent to 
8 percent (Chui et al., 2021; Balakrishnan et al., 2020). 
Still, those that had adopted AI for HRM contin-
ued to report significant cost decreases and revenue 
increases from adoption. 

The relatively low uptake of AI in HRM func-
tions (compared with, say, service operations at 
27 percent) could relate to several challenges that are 
particularly acute in the HRM domain. Work-related 
attributes and job performance outcomes are com-
plex, and they are difficult to define and objectively 
measure. AI adoption in HRM can also be stymied 
by data constraints, ethical or legal unknowns that 
are challenging to work through, and employee 
responses to these new systems that have signifi-
cant impacts on their careers (Tambe, Cappelli, and 
Yakubovich, 2019).

Despite these challenges, there is a potential 
opportunity for the DAF to join the minority share 
of adopters who use AI to improve HRM. This 
report aims to help demonstrate AI functionality in 
the HRM arena by proposing a methodology for a 
class of HRM decision-support tools: the Personnel 
Records Scoring System (PReSS). PReSS draws on 
HR records and applies natural language processing 
(NLP) techniques to produce inputs that support and 
potentially improve HRM decisions.1 

This report is one in a series (Table 1) intended 
to help policymakers address the challenges unique 
to HRM and move forward with adoption, as part of 
broader strategies in the U.S. Department of Defense 
(DoD) and DAF to use “data at speed and scale for 
operational advantage and increased efficiency” 
(DoD, 2020, p. 2; see also DAF, 2021). Separate vol-
umes in the series address how policymakers should 
manage the portfolio of potential use cases and how 
to evaluate use cases in HRM for safety and equity. 

The Untapped Potential 
of Textual Records for 
Decisionmaking

The goal of the DAF HRM system is to produce and 
maintain a workforce that is ready to accomplish 
the DAF’s mission to “fly, fight, and win . . . in air, 
space, and cyberspace” and that embodies the DAF’s 
core values of integrity, service, and excellence (DAF, 
2014; this Air Force Instruction was updated in 
August 2023, after this report was written). The DAF 
executes HRM through interdependent functions 
that determine whom to bring in and how to develop, 
utilize, advance, and retain them. Layers of policy 
structure, beginning with Title 10 of the U.S. Code 
and moving down through subordinate echelons 
of DoD and DAF, specify the essential form of the 

TABLE 1

Outline of Report Series

Volume Number Report Title Report Purpose

1 Leveraging Machine Learning to Improve Human Resource 
Management: Volume 1, Key Findings and Recommendations for 
Policymakers (Schulker, Walsh, et al., 2024)

Overview for senior leaders

2 Machine Learning in Air Force Human Resource Management: Volume 
2, A Framework for Vetting Use Cases with Example Applications 
(Walsh et al., 2024)

Framework for how to prioritize ML 
projects

3 The Personnel Records Scoring System: Volume 3, A Methodology 
for Designing Tools to Support Air Force Human Resources 
Decisionmaking (Schulker, Williams, et al., 2024)

Technical report on scoring officer 
records

4 Safe Use of Machine Learning for Air Force Human Resource 
Management: Volume 4, Evaluation Framework and Use Cases (Snoke 
et al., 2024)

Case study approach to ensure 
safety of ML systems

5 Machine Learning–Enabled Recommendations for the Air Force Officer 
Assignment System: Volume 5 (Calkins et al., 2024)

ML system to inform officer 
assignments

NOTE: Current report is highlighted.
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system and the freedom of action available to DAF 
HRM policymakers and managers. 

At their atomic level, though, HRM outcomes are 
most often the result of individual decisionmakers, 
such as those reviewing records of work-related attri-
butes (i.e., knowledge, skills, abilities, and other attri-
butes, or KSAOs) and then making career-altering 
decisions that best meet strategic HRM goals. Occa-
sionally, these records include quantitative elements, 
such as test scores. But, because KSAOs and work 
performance can be difficult to define and quantify, 
HR records often default to semistructured lists of 
experiences and narrative descriptions written by 
supervisors or instructors.

Compared with data that label and track offi-
cers for HRM processing (e.g., alpha-numeric codes 
for career fields and positions), textual records 
contain rich and specific information on officers. 
For example, each officer receives an annual OPR 
with detailed descriptions of his/her duties, most-
significant accomplishments, and recommendations 
for future jobs and developmental opportunities 
(Schulker et al., 2021). The flexibility of the format 
enables far richer characterizations of officers and 
their KSAOs, but this flexibility also makes it diffi-
cult to use ML to extract this information.

Thus, many HRM decisions, particularly those 
affecting officers, call for a subjective process in 
which a senior officer or a panel of experienced 
personnel reviews the records and issues a ver-
dict. Panel reviews determine whether officers can 
reclassify after being eliminated from training and 
whom to select for developmental education, special 
assignment, command, and promotion opportuni-
ties. Panels determine whom to retain when the 
DAF must manage force numbers by involuntarily 
separating members or forcing them to retire early. 
Panels determine which officers receive prestigious 
awards and key markers of performance.2 Panels 
review officer performance histories and make future 
assignment recommendations, and assignment teams 
attempt to match officers with available jobs to facili-
tate DAF strategic objectives. In sum, statute sets the 
playing field, but the long-run HR outcomes for any 
given member are driven primarily by a series of sub-
jective reviews of unstructured HR records at select 
career milestones. 

Anytime a decisionmaker reviews a record and 
provides input into a decision, they face limitations. 
The decisionmaker’s knowledge and experience are 
imperfect, they are susceptible to biases, and they 
have limited time and energy to spend on process-
ing information and making each decision. These 
limitations create space for ML-based decision inputs 
to improve the effectiveness or efficiency of the deci-
sionmaking process. 

How Decision-Support Tools 
Can Enhance HRM Decisions

There are many potential ways to incorporate ML 
into decisionmaking. To illustrate some of these, 
consider the following implementation designs for 
leveraging ML in a panel review of records, such as 
a board process. As discussed in greater detail in 
another report in this series (Snoke et al., 2024), each 
of the following implementation designs satisfies 
different business objectives, and each has different 
safety and equity implications:

•	 Decide. The ML system automatically gener-
ates a decision.

•	 Recommend. The ML system provides rec-
ommendations that affect how human raters 
review the record and reach decisions.

•	 Score. The ML system generates a score rep-
resenting the degree to which the individual 
conforms to the decision criteria.

•	 Summarize. The ML system generates a sum-
mary for human raters or candidates con-
taining the most-relevant information to the 
HRM decision.

•	 Audit. The ML system replicates the decisions 
after the fact to flag unusual or noteworthy 
cases for further examination.

Implementing each of these designs, regardless of 
the HRM decision in view, requires a set of rules for 
converting the records into information that affects 
the decision process. For example, though there is no 
NLP involved in the enlisted quarterly assignment 
process, it is still a prime case of an HRM process 
that already uses the decide implementation of ML 
decision support. A series of prespecified rules con-
verts information in eligible movers’ HR records, 
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such as their preferences, occupation and skill codes, 
and years of experience, into a final match of person-
nel to assignments (DAF, 2020). The key contribu-
tion of PReSS is that it enables HRM decisionmakers 
to use unstructured text in the same way they use 
other personnel attributes in existing HRM processes 
such as enlisted assignments. The primary novelty of 
PReSS compared with these other processes is that 
it arrives at the decision rules through NLP and ML 
techniques, as we describe in the following section.

Personnel Records Scoring System 
Conceptual Overview

PReSS draws on NLP techniques because HRM deci-
sions often involve a detailed review of unstructured 
textual information. In this proof of concept, PReSS 
focuses specifically on applying NLP to score officer 
performance narratives on a spectrum from low- to 
high-performing. Such a system has immediate value 
for the many decisions that include performance 
history as a key input. Additionally, the ability to 
quantify aspects of these narratives could also yield 
a better understanding of the conditions that lead to 
higher or lower levels of performance, which would 
have much wider applicability outside the direct con-
text of a selection board or panel. Though this focus 
on performance narrows the initial scope of PReSS, 
the rest of this report will discuss how the same 
techniques and steps would apply to other HRM 
decisions with non–performance-related inputs and 
decision goals. 

There are two general classes of methods for cre-
ating systems for scoring unstructured text: Human 
experts can create the scoring rules, or ML methods 
can derive them from historical board outcomes 
generated by human experts. Researchers have used 
human ratings of the positivity or negativity of words 
to develop high-performing, rule-based NLP systems 
for scoring text (Hutto and Gilbert, 2014), and these 
methods are also applicable to scoring officer perfor-
mance narratives. The primary advantages of hand-
crafted, rule-based systems are that they are explain-
able and that they can work in situations where data 
are limited. However, these systems can be costly 
to create and maintain, and they depend on human 

experts articulating a stable set of rules that can be 
accurately applied to future cases.

The PReSS methodology uses an ML approach 
known as supervised ML, which bypasses the human 
rating process by using an ML model that learns 
rules from example pairs of inputs and outputs.3 The 
primary advantage of ML approaches is that they 
automate the creation of the scoring rules, which is 
useful when the exact set of rules is not known and 
would be labor-intensive to create and maintain.

Given that both the human and ML approaches 
have advantages and drawbacks, HRM decisionmak-
ers and analysts should determine the appropriate 
method on a case-by-case basis. The ML approach is 
the logical choice for PReSS, because rich historical 
example data are available, and because the goal of 
PReSS is to illustrate the general applicability of ML 
to augment subjective decisions of HRM personnel 
based on textual records, necessitating a method that 
is not case-specific.

Table 2 describes some of the ways that a tool like 
PReSS could be used to augment board processes. 
Only one of the ML Implementation Designs, decide, 
seeks to fully automate decisions. The remaining four 
designs provide different inputs to board members 
and at different points in the scoring process. Thus, 
some of the implementation designs would have rela-
tively greater influence on board outcomes (e.g., rec-
ommend and score), and others would have relatively 
less influence on board outcomes (e.g., summarize 
and audit).

As described in another report in this series 
(Snoke et al., 2024), each ML Implementation Design 
contained in Table 2 meets one or more HRM objec-
tives: reduce workload, improve human decision-
making, standardize process, advance DAF priorities, 
increase transparency, and provide feedback. Even 
so, prior to applying ML in the context of board 
processes, the U.S. Air Force must ensure that the 
system meets standards for accuracy, fairness, and 
explainability.

Scope of Applications

In this report, we focus on two board processes. The 
first is officer promotion boards. These boards meet 
to determine which officers will be promoted to the 
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ranks of O-4 and O-5. The purpose of promotion 
is to “select officers through a fair and competitive 
selection process that advances the best qualified 
officers to positions of increased responsibility and 
authority” (DAF, 2023, p. 12). Outcomes of the pro-
motion process are vital to maintaining the right skill 
mix and to developing future leaders. And yet, the 
promotion process is extremely resource-intensive in 
terms of the time to prepare board members to score 
records and the time spent scoring records. Addition-
ally, despite instructions and processes to standardize 
scoring, results are at least somewhat dependent on 
differences in rater background and experience.

The second board process we focus on is devel-
opmental education boards. These boards meet 
to determine which officers will receive the most-
competitive in-residence educational opportunities. 
Once again, the results of intermediate and senior 
developmental education (SDE) boards are vital to 
ensuring the proper future skill mix. As with pro-
motion boards, developmental education boards are 
resource-intensive and at least somewhat dependent 
upon the human raters that convene.

By using ML to augment human raters, the DAF 
could increase the efficiency of promotion and devel-
opmental education boards. This could be done, for 
example, by issuing automated recommendations 
for the strongest and weakest records and direct-
ing human raters’ attention to the most-ambiguous 
records. Alternatively, this could be accomplished by 

generating machine summaries of the most-critical 
information contained in OPRs.

Additionally, by using ML to augment human 
raters, the DAF could increase the effectiveness of 
promotion and developmental education boards. 
Although historical board results are potentially sub-
ject to errors and bias of human raters, they reflect 
the consensus judgment of subject-matter experts. 
An ML system trained to emulate expert judgment 
could, at a minimum, detect cases when a future 
board’s decisions deviate from expectations. Alterna-
tively, an ML system could direct experts’ attention 
to the most-ambiguous records, allowing the experts 
to increase resources spent on the most-demanding 
edge cases. Finally, an ML system that summarizes 
OPRs could decrease the likelihood that human 
raters would overlook a key piece of information.

These are just some of the ways that ML could 
increase the efficiency and effectiveness of human 
ratings in promotion and developmental education 
boards.

Purpose of the Report

Most of the methodological techniques that PReSS 
employs are very common in the field of NLP, and 
many books describe the details of implementing 
them in different coding languages. For common 
techniques, then, we will provide a conceptual sum-
mary and point to resources with more-detailed 

TABLE 2

How PReSS Relates to ML Implementation Designs

ML Implementation Design PReSS Contribution to Design

Decide

Recommend

Score

Summarize

Audit

HRM personnel could establish a performance cutoff and use predicted performance levels 
to select a subset of officers for an opportunity (or as a first stage in a multistage selection 
process).

HRM personnel could use predictions to make recommendations to decisionmakers, to 
recommend either a final decision or a level of scrutiny (e.g., regarding someone in the “gray 
zone” close to the selection cutoff).

HRM personnel could include the model score alongside the scores of panel members when 
calculating the total score for a record.

Panel members could use the PReSS General Performance Summary, or a tailored version of 
it, in the scoring process. HRM personnel could use the General Performance Summary when 
providing feedback to nonselected members.

Performance-based HRM actions that differ substantially from predicted performance levels 
could be flagged for further review and refinement of selection processes.
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descriptions. However, building an operational 
decision-support system requires many specifica-
tions and tuning decisions that present trade-offs. 
For example, more-complex models might perform 
better, but they might also be less traceable and 
require more computing resources. Therefore, a key 
purpose of this report is to document and explain the 
choices that led to the initial version of PReSS so that 
future DAF efforts can revisit and refine the system.

We illustrate PReSS using the example of devel-
opmental education and promotion boards that meet 
to evaluate and allocate opportunities to mid-career 
officers at the ranks of O-4 and O-5. However, the 
models that PReSS uses and the decision-support 
tools that it supports can be generalized to early-
career officers and to the enlisted force.

Organization of the Report

Figure 1 shows a high-level overview of the main 
development steps for PReSS, which is reflected in 
the structure for this report. The remaining sections 
are organized as follows:

• The next section describes how the develop-
ment process begins by breaking the text 
into distinct tokens and indexing each record 
according to how many occurrences of each 
token it contains. 

• We then explain how we combined these 
record-specific indexes with board outcomes 
or board scores so that an ML model can 
identify which tokens predict higher levels of 
performance. 

• Next, we describe ways to operationalize a 
model relating text to performance levels by 
generating decision inputs. This initial version 
of PReSS produces a multipurpose decision 
input, which we refer to as the PReSS General 
Performance Summary. 

• The last section presents our conclusion on 
how PReSS-type decision-support tools fit 
in the broader context of adopting ML to 
improve DAF HRM.

FIGURE 1

Overview of PReSS Development Steps

3. Fit model of board results
to identify important tokens
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Numerically Representing the 
Meaning of the Raw Text

To develop the PReSS ML model for use in HRM 
decision support, the first step in the process is 
breaking the text into distinct tokens and indexing 
each record according to how many occurrences of 
each token it contains.

The decision inputs in the design implementa-
tions (recommend, score, etc.) all require a method 
for converting raw text describing performance into 
a score that accurately represents the level or quality 
of performance. As Figure 1 shows, the first two steps 
of this process quantify the raw text so that it can be 
linked to board results by an ML model. 

The right method for quantifying text depends 
on what information we need to extract to repli-
cate the process that a human panel member might 
go through when reading the text and assigning a 
score. For instance, here is how one experienced Air 
Force Chief Master Sergeant evaluated performance 
statements:

When the chief saw a strong bullet, he marked 
a dash “-” in the margin. If the accomplish-
ment was significant, he crossed the dash with 
a “+.” When the accomplishment had strategic 
level impact he distinguished the line by draw-
ing a circle “0” around the “+.” Consistency 
was the key in this approach. Scores were then 
tallied to reveal the strongest package (Jaren, 
2017).

There are three main sources of information 
that NLP methods can attempt to extract from text 
to mimic the chief ’s scoring process: (1) information 
conveyed by the presence or absence of particular 
words, (2) information conveyed by the meaning of 
the words in context, and (3) information contained 
in the order in which the words appear. The simplest 
NLP approaches focus on (1), but more-complex 
models that capture elements of (2) and (3) might 
perform better, depending on how important the 
context and word order are to interpreting the text. 

The example suggests that word order and con-
text are of lesser importance to the chief ’s scoring 
process. The human process involves scanning the 
record for indicators of significant accomplishments 
(i.e., the presence of key words and phrases), with 

little attention to the order of the bullets. Further, 
while the meaning of words in general can vary 
greatly depending on the context, in the very select 
world of DAF performance writing, the context is 
probably less relevant to the meaning. Terms like  
Sq/CC (squadron commander), MAJCOM (Major 
Command), and officer have consistent meanings 
that do not depend on other content.4 Therefore, it is 
logical to begin by testing methods that measure the 
presence or absence of terms in performance report 
text. ML models can then use this information to 
predict performance scores (this is discussed later).

Preprocessing and Standardizing the 
Text

Most guides acknowledge that some amount of pre-
processing can be beneficial when designing an NLP 
system (Vajjala et al., 2020). Preprocessing removes 
characters that do not convey significant meaning, 
and it ensures that the numerical representation of 
the text is identical for truly equivalent terms.5 The 
end product of preprocessing is a final sequence of 
tokens (sets of characters considered by the model 
as distinct units) that informs the model’s vocabu-
lary and provides a summary of the content of each 
record.

Figure 2 illustrates two preprocessing approaches 
that we tested. The raw text at the top of the figure 
shows a typical bullet from an OPR. It contains a 
stratification statement (i.e., #1 of 19 Sq/CCs) that 
ranks the individual relative to their peers. It also 
includes school and command push statements (i.e., 
follow SDE w/JCS [Joint Chiefs of Staff] and Wg/CC) 
that advocate high-value development opportunities 
for the individual. The text contains abbreviations 
such as ldr for leader, SDE for senior developmental 
education, and Sq/CC and Wg/CC for squadron and 
wing command. Finally, the text contains punctua-
tion such as backslashes, number signs, and excla-
mation points. All of these features of the raw text 
convey meaning.

The first preprocessing approach is a minimalist 
approach that converts the text to lowercase, removes 
punctuation, and standardizes the appearance of 
stratifications6 and dollar amounts.7 This approach 
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has the advantage of being simple and easy to imple-
ment, but it does not allow the model to recognize 
the similarities between common variants of the 
same term (e.g., it would not recognize that “mgt,” 
“mngr,” “mng’d,” and “mgmt” are all variants of the 
root “manage”). Although humans readily see closely 
related variants of the same term, the NLP system 
recognizes only literal matches. The minimalist 
approach also discards potentially meaningful punc-
tuation, such as exclamation points. The alternative 
approach uses an algorithm called byte-pair encoding 
(BPE)8 that breaks the text into individual characters 
and then reassembles it into subwords according 
to how frequently combinations occur in the data 
(Sennrich, Haddow, and Birch, 2016; Gage, 1994). As 
Figure 2 shows, our use of the BPE method retains 
symbols, punctuation, and capitalization while occa-
sionally decomposing phrases into components (e.g., 
“Battle-hardened” becomes “Battle” + “-” + “hard” + 
“ened”). Thus, BPE captures more information and is 
more adept at handling word fragments, but it intro-
duces a more complicated vocabulary.

Converting Sequences into Measures 
of Term Presence and Absence

After the preprocessing cleans and standardizes the 
text, the next step is to convert the sequence of terms 

in each record into a matrix with cells that count how 
many times each word appears in the record. The 
simplest way to do this is to convert the text strings 
(such as those in Figure 2) into a term-frequency (TF)
matrix, where there is a row for each record (i.e., the 
concatenation of all OPRs for an officer), a column 
for each term in the vocabulary, and cells contain-
ing the number of times each term appears in each 
record. Because this step discards the information 
contained in the word order, it is colloquially known 
as the “bag-of-words” (BoW) approach. Many popu-
lar software packages, such as scikit-learn in Python 
(Pedregosa et al., 2011), will execute many variants of 
this transformation very efficiently in a single line of 
code. 

Though the BoW concept is the core of the 
approach in PReSS, our final set of model inputs 
requires the following additional steps.

• Consider multitoken phrases in addition to
single tokens. In addition to single tokens, we
enrich the TF matrix by allowing for two- 
and three-token combinations. For example,
converting the minimalist token string from
Figure 2 to TFs would include a column for
“#1”, “#1 of”, and “#1 of <amt>” as possible
predictors of performance. This will give the
ML model additional capacity to capture the
impact of key phrases.

FIGURE 2

Example Effects of Preprocessing and Standardizing Steps

NOTE: BPE introduces a special character at the beginning of a word to differentiate tokens that begin new words from tokens that occur in the 
middle of a word. In this figure, we have replaced those special characters with the “_” symbol. The raw text is not from the actual data to protect 
privacy.
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•	 Limit the size of the vocabulary. Including all 
possible tokens would produce a matrix with 
tens of thousands of columns, most of which 
would contain words that rarely appear in 
performance records. Extremely rare terms, 
by definition, will not strongly relate to any 
outcome, so we limit the vocabulary to con-
tain only the most-frequent terms. To ensure 
that this does not limit model performance, 
we test different vocabulary sizes and examine 
the effect on model performance.

•	 Normalize the TFs. The potential use cases for 
PReSS include situations in which the length 
of the text to score could vary. For example, 
one might want to use PReSS to compare per-
formance of officers at different points in their 
careers, when some officers will have accu-
mulated more OPRs than others. To reduce 
the sensitivity of the model predictions to the 
overall length, we normalize the TFs by divid-
ing each row by the total number of terms in 
the row.9 

•	 Multiply by the inverse document frequency 
(IDF). Long-standing results in the field of 
information retrieval show that there is addi-
tional benefit to adjusting TFs by a measure 
of how common each term is across all docu-
ments (Robertson, 2004; Sparck Jones, 1972). 
The intuition for this adjustment is that terms 
that are common everywhere are likely to be 
less useful for differentiating records from 
one another than terms that are less common 
overall. The IDF adjustment relies on the 
document frequency of each term, which 
is the number of records in which the term 
appears at least once. 

Word Meaning in Context and 
Sequential Ordering

The NLP methods behind this initial version of 
PReSS are accurate and interpretable, but they have 
limited depth. The models contain a vocabulary of 
common terms, and they can predict how different 
terms affect selection likelihood when they appear in 
a record. But they do not “understand” that “#1/22” 
is a stratification, “F-16CJ” is an aircraft, and “1 FW” 
is a large unit. Using NLP to build a knowledge base 
of these types of relations, known as named entity 
recognition within the domain of information extrac-
tion (Lane, Howard, and Hapke, 2019), could expand 
the horizon of NLP tools that HRM managers could 
use to perform other tasks (such as suggesting text 
or interacting with users as they write). Further, the 
NLP methods we use have no awareness of the mean-
ing of the words in the vocabulary.

Though the next section of this report shows 
that the TFIDF approach performs well in the 
task of accurately predicting a performance score, 
other PReSS applications might call for alternative 
approaches that capture the richer meaning of words 
in context and the effects of how they appear in 
sequence. These approaches generally fall under the 
class of deep learning NLP (Vajjala et al., 2020), and 
they are especially useful in complex NLP tasks like 
machine translation that require understanding the 
language deeply enough to accurately generate it. 

In contrast to TFIDF, some deep learning 
approaches represent each word in the text as a vector 
of values capturing different elements of  
what the word means (e.g., see Mikolov et al., 2013; 
Pennington, Socher, and Manning, 2014). Using these 
word vectors in a model involves replacing the model 
inputs based on token counts with alternative inputs 
based on the different dimensions of word meaning. 
Previous research has developed a set of word vec-
tors specific to the defense context (Schirmer and 
Léveillé, 2021). However, the research on word vec-
tors shows that they do not necessarily improve the 
performance of predictive models in defense-related 
contexts (Schirmer and Léveillé, 2021). More-recent 
advances in NLP performance have come through 
extremely large models with whole sections of the 

The NLP literature refers to the matrix combin-
ing TF and IDF values as the TFIDF matrix. The final 
TFIDF matrix contains a row for each record, r, and 
a column for each term, t. The following equation 
defines the values that enter into the matrix:

​​TFIDF​ t,r​​  =  ​ 
​TF​ t,r​​ _ ​∑ ​t ′ ​​​ ​TF​ ​t ′ ​,r​​​

 ​​[log​  1 + n _ 1 + ​DF​ t​​
 ​ + 1]​​

where TFt,r is the TF for term t and record r, DFt is 
the document frequency for term t, and n is the total 
number of records.
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architecture dedicated to capturing the meaning of 
the words in context (Vaswani et al., 2017).

Richer options also exist in the deep learning 
framework to capture information in the order in 
which words appear. In the context of scoring OPRs, 
it is likely that more-recent performance statements 
carry more weight than earlier statements.  
Deep learning models that incorporate memory 
(Hochreiter and Schmidhuber, 1997) or self-attention 
(Vaswani et al., 2017) could, therefore, perform 
better, but at a cost of making the model more com-
plex to estimate and less explainable. These tech-
niques should be explored based on theory of the 
reasoning task and the amount of data available. 
Then they can be evaluated according to how their 
performance compares with the far simpler TFIDF 
models.

Using Labels to Fit a High-
Performing Model

Once the TFIDF process quantifies the text in each 
officer record, the next step is to pair this informa-
tion with some indicator of the performance level in 
each record. The ML fitting process then uses these 
indicators (labels in the ML vernacular) to learn 
which terms correlate with significant accomplish-
ments. The two goals of the fitting process are (1) to 
produce a set of models capable of predicting  
the performance level of a new record, and (2) to gain 
some sense of how accurate each model will be when 
attempting to generate predictions. Different classes 
of models require prespecified values that affect how 
they estimate the scores, so a subgoal of (2) is to find 
the most accurate version of each model by testing a 
range of possible values.

Data Overview

The input data for the modeling consisted of 205,782 
OPRs that the Air Force Personnel Center extracted 
from the Automated Records Management System 
(ARMS). ARMS stores officer records as images 
or portable document format (PDF) files, so we 
extracted the text as described in Schulker et al. 
(2021). The model fitting focused on the performance 

sections of the OPR rather than the header or job 
description information, and we combined all avail-
able performance text for each officer into a single 
string in preparation for the TFIDF conversion.10

We combined the performance information from 
the OPRs with two potential sources for quality indi-
cators. First, we used information from O-5 and O-6 
selection boards (like Schulker et al., 2021). The only 
information available from these boards to differ-
entiate record quality is the final selection decision. 
Second, we used information from Developmental 
Education Designation Boards (DEDBs) for SDE and 
intermediate developmental education (IDE). These 
are based on panel reviews of records that have fol-
lowed a scoring process like promotion boards since 
2014. Unlike the binary decisions from promotion 
boards, however, the DEDB results include the panel 
average of numerical scores ranging from 6 to 10, 
which provides richer information for ML models to 
discern the relative quality of different records. 

Three key aspects of the data are worth 
highlighting.

1.	 Though the selection board labels represent 
a large sample of high-fidelity information 
on the opinions of board members, initial 
users must interpret each model’s predic-
tions considering the specific board context. 
For example, O-6 promotion boards seek to 
differentiate among those in a select sample 
that consists only of officers who successfully 
reached the O-5 milestone. Thus, a ruleset 
predicting these decisions will likely overlook 
positive and negative statements that affect 
only officers early on in their careers if these 
statements are dissimilar to the late-career 
markers.

2.	 We provided performance statements only 
from OPRs to the ML models, but other 
board-specific information significantly 
affects the panel scores each record receives. 
In addition to OPRs, promotion boards 
receive a promotion recommendation form 
(PRF), in which supervisors provide com-
ments and a three-tier recommendation to the 
board. DEDBs receive a separate form with 
comments and relative rankings from supervi-
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sors. PRFs are not generally releasable outside 
of the board processes, but supervisor com-
ments and rankings would have been available 
to include in the DEDB models. Even then, we 
chose not to include the PRF because it would 
limit the usefulness of the resulting models. If 
the ML models were to use information that 
is added to the record only to facilitate a selec-
tion board, the resulting model would not be 
able to accurately predict performance levels 
in other contexts.11 The decision to include 
only general performance information in this 
initial version ensures that the system will be 
as broadly applicable as possible.12

3.	 A complete set of records was not available 
for the study, so the models are limited to a 
subset of events at which officers met selection 
boards, and not all records in the data con-
tain officers’ complete performance history. 
Table 3 summarizes the records that we used 
in the model training process. 

Model Estimation Overview

We tested several ML methods for predicting board 
scores and selection decisions from TFIDF values. In 
this section, we focus on regression-based methods 
because they position the system well for evalua-
tion, given that they are simple to use and interpret 
(Rudin, 2019). The regressions generate a predic-

tion based on a linear combination of TFIDF values. 
Thus, they enable the analyst to see the direct contri-
bution of any term to the final predicted score.

One challenge with regression stems from the 
reality that the TFIDF matrix has thousands of pos-
sible predictors, and the predictors are likely to be 
highly correlated with each other. We addressed this 
challenge with regularization.13 While a standard 
regression would allow effects for all possible predic-
tors, regularization pressures the model to focus  
on only the most-significant predictors (Hastie, 
Tibshirani, and Friedman, 2009).14 As a result, any 
text that does not strongly relate to performance (as 
signaled by the board results) will not factor into the 
performance scores at all.

Forming the TFIDF matrix required two deci-
sions, as discussed in the previous section: the overall 
size of the vocabulary and the allowable limit for 
multitoken phrases. Incorporating regularization 
into the regression model added a third decision 
involving a “penalty” that determines how much to 
pressure the model to reduce the influence of ever 
greater numbers of terms. There is no way to know 
which combination of these values will work best for 
scoring records, so we designed the model-fitting 
process to test a range of TFIDF and penalty values 
and selected the optimal set. 

Because ML models are so flexible, they can 
always continue to improve predictions on the avail-
able data by making the models more tailored and 

TABLE 3

Summary of Selection Board Records Included in Analysis

Selection  
Board

Decision  
Years

Total Number of 
Decisions

Number of Decisions 
Matched to Records

Average Number of 
OPRs per Matched 

Record

O-6 promotiona 2012, 2014–2016, 2019 35,030 5,017 12.78

O-5 promotiona 2006–2011,  
2013–2017

64,900 17,790 10.70

SDEb 2013–2021 9,228 7,054 11.86

IDEb 2013–2021 12,104 6,163 7.91

a The starting number of decisions for promotion boards includes cases in which members met the board in the promotion zone (IPZ) and above the 
promotion zone (APZ) and members who were selected below the promotion zone (BPZ). We did not include BPZ nonselects because their quality level 
is not directly comparable to IPZ and APZ nonselects. In other words, high-quality BPZ nonselects are not selected because BPZ receives a small share 
of the opportunity, not because of the quality of the records. However, board processes confirm that BPZ selects are at or above the quality level of the 
lowest IPZ select, so these records are valid examples of records of sufficient quality to merit selection for the model to consider. 
b Officers receive multiple considerations for developmental education, or multiple “looks.” In our analysis, we included all available “looks” for each of-
ficer.
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complex, but such improvements reach a point where 
they know the available data too well and perform 
worse on never-before-seen examples. Procedures 
to prevent such overfitting involve withholding data 
from the model and then using the withheld data as 
a proxy for new examples to evaluate how models 
perform. By testing different values for the model 
parameters on data that the model has not yet seen, 
the model-fitting process arrives at an optimal con-
figuration and provides quantitative measures for 
how well it is expected to perform on future data, 
given that the process for generating the future data 
resembles the one that generated the available data. 
The text box on the opposite page, entitled “PReSS 
Model Selection Process,” describes our exact process 
in more detail. 

Results of Model Selection

Tables 4 and 5 illustrate the main product of the 
model selection process by comparing the perfor-
mance statistics for the best-performing regularized 
logistic/linear regression models with two alterna-
tives, which are described in more detail in the 
appendix. The first alternative, referred to as Naïve 
Bayes, learns a model of how likely one word is to 
come after another word within the set of promote 
records or do-not-promote records. Using these 

models, Naïve Bayes generates a prediction by esti-
mating how much more (or less) likely a word or 
phrase is to come from the promote corpus versus 
the do-not-promote corpus and gives a label based on 
which corpus that the word or phrase is most likely 
to stem from. The second alternative, AttentionNet, 
is a neural-network–based approach that replaces the 
TFIDF values with “attention” values that the model 
estimates during the fitting process. This alternative 
has a much greater ability to account for interactions 
or nonlinear effects of words and phrases compared 
with the other methods. We selected these alternative 
approaches as bookends on the complexity spectrum, 
with the primary method, logistic regression, falling 
between Naïve Bayes and AttentionNet.

The best-performing methods for each measure 
are highlighted in Tables 4 and 5. All methods per-
form comparably for promotion outcomes, as seen in 
the similar values for accuracy and AUC. The DEDB 
results show that the best models explained 33 to 
34 percent of the variation in scores, and the average 
prediction error was between 0.40 and 0.51 points on 
the 6-to-10-point scale.

Figures 3 and 4 further illustrate the model fit 
of the regression approaches for promotion boards 
and DEDBs by comparing predictions of the test data 
with the actual results. Figure 3 compares the model’s 
assessment of each record, in the form of a predicted 

TABLE 4

Performance Statistics for Predicting Promotion Board Results

Accuracy (%) Precision Recall AUC

O-6 promotion

Logistic regression (minimalist) 81.8 0.805 0.755 0.895

Logistic regression (BPE) 82.5 0.800 0.781 0.899

Naïve Bayes 76.3 0.718 0.725 0.864

AttentionNet 73.5 0.718 0.929 0.827

O-5 promotion

Logistic regression (minimalist) 88.9 0.914 0.869 0.952

Logistic regression (BPE) 90.2 0.929 0.879 0.963

Naïve Bayes 94.0 0.913 0.978 0.950

AttentionNet 85.4 0.898 0.926 0.875

NOTE: AUC = area under the (receiver operating characteristic) curve (see text box).
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PReSS Model Selection Overview

Possible Ranges for Parameters

We considered possible ranges for tuning parameters 
that affect the TFIDF matrix and the regularization 
strength. We then sampled randomly from these 
ranges to generate 99 candidate configurations to 
explore. We expanded the ranges anytime we saw that 
best model called for a parameter near the bound-
ary of the range. The ranges we considered were as 
follows:

•	 Vocabulary size can take seven possible values 
ranging from 5K to 40K.

•	 Tokens can consist of a single word or can 
include combinations of up to five words.

•	 Penalty parameters were selected from a uni-
form distribution ranging from zero to 200 for 
binary outcome models and zero to 0.0001 for 
continuous outcome models.a

Procedure for Measuring Performance on 
New Records

Our procedure for splitting the data to prevent over-
fitting included the following steps:b

•	 We randomly split the data into a training set 
containing 80 percent of the records and a test 
set with the remaining 20 percent. The test set 
was not available to models at any point until 
all final decisions had been made.

•	 With the training data, we applied cross-
validation (which also uses random splits in 
the data) to measure the performance of a 
given set of parameters.

•	 We selected the model that maximized perfor-
mance and fitted this model to the entire set of 
training data.

•	 We used the best model in each class to predict 
outcomes for the test data to measure perfor-
mance of each class on new records.

Model Performance Metrics and Defini-
tions

We relied on well-known metrics to compare the per-
formance of models for promotion board outcomes, 
where the only available outcome was a binary indica-
tor for whether an officer was selected. For accuracy, 
precision, and recall, we generated predictions accord-
ing to whether select or nonselect was more likely for 
a given officer. The metrics we used were as follows:

•	 Accuracy: the fraction of records the model 
predicts correctly 

•	 Precision: the fraction of predicted selections 
that are actually selected

•	 Recall: the fraction of actual selects that the 
model predicts will be selected

•	 Area under the (receiver operating characteris-
tic) curve (AUC): a continuous statistic, rang-
ing from zero to one with higher values indi-
cating better fit, that measures the ability of 
a model to discriminate between positive and 
negative cases and has several different inter-
pretations (Hastie, Tibshirani, and Friedman, 
2009).

For DEDB scores, which are continuous, we used 
the following metrics for model performance:

•	 R2: the proportion of the total amount of error 
that is accounted for by the model

•	 Root mean squared error (RMSE): the square 
root of the average squared difference between 
the model’s predicted value and the true value

•	 Mean absolute deviation (MAD): the average 
difference between the model’s predicted value 
and the true value.

a In scikit-learn’s implementation of L1 regularization for logistic regression, larger values indicate weaker regularization, whereas 
in the implementation of L1 for linear regression, smaller values indicate weaker regularization. In general, models with weaker 
regularization performed better in both cases.
b Our splitting procedure did not factor in the time of the boards. For example, an alternative procedure might further structure 
the withholding so that past records are used for training and new board records are used for testing. Thus, it is possible that the 
process overestimates how well the models will perform on new records, depending on how much the data and scoring process vary 
over time.
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probability of selection, with the actual board deci-
sions. The figure shows that the models differentiate 
well between selects and nonselects, especially for 

the O-5 board, where very few nonselects received a 
high probability from the model and very few selects 
received a low probability. 

FIGURE 3

Predicted Promotion Probability Versus Actual Board Decisions for Test Data
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TABLE 5

Performance Statistics for Predicting DEDB Scores

R2 RMSE MAD

SDE

Linear regression (minimalist) 0.361 0.501 0.394

Linear regression (BPE) 0.359 0.502 0.397

Naïve Bayes 0.055 0.609 0.483

IDE

Linear regression (minimalist) 0.369 0.393 0.309

Linear regression (BPE) 0.375 0.391 0.308

Naïve Bayes 0.023 0.487 0.398

NOTE: Given the performance of AttentionNet in the initial testing of promotion board models, we chose to focus on other models when the DEDB out-
comes became available. To apply the Naïve Bayes model to average board scores, we rounded the board scores to the nearest half-point and treated 
the score as a categorical outcome. 
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Figure 4 compares predicted DEDB scores on the 
test data to the actual record scores. The model gen-
erally predicts higher scores for records that received 
higher scores, as shown by the fact that the box plots 
shift further to the right with each successive cat-
egory on the vertical axis. However, all the boxes are 
compressed toward the median score (approximately 
8.0), compared with their actual scores, which means 
that the model overpredicts for the lowest-scoring 
records and underpredicts for the highest-scoring 
records. In other words, the model fails to find 
enough information in OPRs to accurately identify 
an outstanding record scoring above a 9.0 compared 
with a strong record that received an 8.5. The best 
explanation for this pattern is that factors that dif-
ferentiate quality in the extremes relate to supervisor 
comments and rankings not contained in the OPRs.   

If the more-complex models had performed 
significantly better than the regression-based 
approaches, this would have presented a possible 
trade-off between model accuracy and its ease of use 
and interpretability. However, as is often the case 
in applications with clear structure and relevant, 
high-quality data (Rudin, 2019), performance did not 
meaningfully differ between model classes. There-

fore, it is pragmatic to default to the simplest and 
most interpretable method: regression techniques 
with minimal text preprocessing. The remaining sec-
tions in this report will reference these models in all 
results, but the performance targets in Tables 4 and 5 
serve as benchmarks that future modeling efforts can 
improve upon as additional data become available. 

Using Models to Generate 
Decision Inputs

The model-fitting process produces a set of scoring 
rules, in the form of a regression model, that can 
convert performance statements in an officer’s record 
to a prediction of the board score or result. These 
predictions would be the only necessary ingredient if 
decisionmakers were to adopt the decide implementa-
tion for these specific boards. However, we designed 
PReSS to be a general-purpose scoring tool that is 
also useful outside these boards in the recommend, 
score, or summarize ML implementations. This sec-
tion describes PReSS’s novel method for generating 
predictions that can generalize outside a particular 
board context. It then presents an overview of the 

FIGURE 4

Predicted DEDB Score Versus Average Panel Score for Test Data
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initial design of PReSS’s main output: a general sum-
mary of the performance level, strengths, and weak-
nesses in an officer’s record. 

Predicting the Quality of a 
Performance Record

Using PReSS Models to Evaluate Snippets of 
Text

Each model learned its scoring function using past 
examples, in which a board had reviewed officer 
records and scored them as part of the process for 
determining whom to select for promotion or devel-
opmental education opportunities. In this case, each 
officer’s record is made up of a concatenated stack of 
OPRs containing dozens of OPR bullets. This means 
that the model is expecting new records to take the 
same form as ones used for training, and it is unclear 
how well it will perform in novel applications. For 
example, using PReSS to score individual OPRs or 
text snippets, which are key components of PReSS’s 
general performance summary, will likely yield 
unstable results that are difficult to interpret.  

To illustrate this instability, Table 6 applies the 
PReSS models for O-6 promotion and SDE board 
scores to predict the quality of five example perfor-
mance statements. The first row offers the model an 
empty record with no recognizable terms, while the 
second statement is badly written and intentionally 
runs counter to the model’s expectations. We crafted 

the final three statements to realistically indicate 
increasingly high levels of performance. The first 
column for each board (“raw score”) shows model 
predictions for each individual statement. These 
raw scores are often extreme and difficult to inter-
pret. The extreme results stem from the fact that the 
TFIDF process normalizes the text for length. Thus, 
the model assumes that it has an entire record of 
text with only the terms included in each statement, 
which would be a highly irregular record. For the 
blank record and the second statement, the model 
expects no chance of selection for O-6, whereas it 
predicts certain selection for the fourth and fifth 
statements. The DEDB model also predicts scores 
at the extremes that are sometimes well outside the 
possible scoring range. While it might be possible 
to trace the model’s logic (e.g., a hypothetical record 
where every bullet contained a MAJCOM stratifica-
tion would seem to have a high chance of selection), 
these outputs would not earn the trust of decision-
makers or be useful for comparing the statements 
with each other. 

Instead of asking the models to consider each 
statement as if it were representative of the entire 
record, a better-designed question for the models 
would be: What would happen if this statement were 
added to an otherwise average record? This intuition 
forms the basis of the predictions in the “smoothed 
score” columns. To generate the smoothed predic-
tions, we take the TF values from the respective state-

TABLE 6

Raw and Smoothed Performance Predictions for Example Statements

Performance Statement

O-6 Promotion Probability SDE Score

Raw Score Smoothed Score Raw Score Smoothed Score

Blank 0.00 0.54 7.06 7.95

Not war ready, very inexperienced, will fail in battle if 
deployed—likely to crash acft

0.00 0.53 6.50 7.95

My CAF expert! From operations to staff a full-spectrum leader; 
SDE/Jt Staff absolutely; future Ops Sq/CC!

0.47 0.54 9.38 7.97

#1/202 HQ AMC O-4s! Charismatic ldr--raised standard for my 
CAG; JCS & Sq/CC after IDE; fast track to SDE!

1.00 0.61 10.82 7.99

#1 of 19 Sq/CCs! Battle-hardened ldr—flawless cmd record at 
home & deployed; follow SDE w/JCS and Wg/CC!

1.00 0.70 18.12 8.06

NOTE: The smoothed scores for the blank records in the first row contain only average text, so these values (0.54 for O-6 promotion and 7.95 for SDE 
score) are approximately the average outcome for officers facing each board.
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ments and round them out by adding new terms that 
represent the average use of each term in the train-
ing data until we reach the average number of terms 
for the records that met each board.15 The results 
accord much more with what a decisionmaker might 
expect to see when comparing the statements. The 
second statement, though it reads quite negatively to 
a human, does not contain any terms that dramati-
cally alter the score in the context of a larger record 
of performance. The final three statements begin to 
elevate the record, particularly in the eyes of the O-6 
promotion board. The last statement, which contains 
arguably the most important performance marker 
one could have—a #1 stratification as Squadron 
Commander—raises the probability of selection to 
O-6 by 16 percentage points.

Applying the Snippet Method to Break Down 
and Summarize a Record

Beyond allowing decisionmakers to compare the 
value of individual performance statements, this 
smoothing concept enables any PReSS model to 
assess the impact of different portions of an offi-
cer’s performance history, such as individual OPRs 
or even individual snippets of text within an OPR. 
We can generate an impact score of a single OPR 
or a text snippet by replacing the selected text with 
average-looking text and recomputing the prediction. 
If replacing the selection causes the performance 
score to decline significantly, this would indicate that 
the selection contains important markers of perfor-
mance. By contrast, if replacing the selection causes 
the performance score to increase, then the text could 
signify below-average performance. High-impact 
snippets (both positive and negative) form the basis 
of PReSS’s visualizations and textual summaries, 
which we describe next.

Overview of the PReSS General 
Performance Summary

In this early stage of the development process, it 
would be premature to build out the system into an 
interactive tool supporting a single use case, espe-
cially considering that each use case faces different 
types of complexity that affect its prospects and that 

the design process for a use case will need to include 
testing and evaluation of multiple implementation 
options for safety considerations (Walsh et al., 2024; 
Snoke et al., 2024). Instead, we provided code and 
models to generate general performance summaries. 
These general performance summaries and the func-
tionality underlying them can be folded into specific 
USAF applications in the near future.

To help decisionmakers understand PReSS’s 
potential uses, we also created a general performance 
summary that outlines the performance informa-
tion in each officer’s record with an eye toward the 
recommend, score, and summarize implementations. 
This summary report might be directly useful, but, if 
not, it could also serve to spur ideas for adapting the 
PReSS concept to different decision-support appli-
cations. The PReSS general performance summary 
contains three main sections: (1) an overview of the 
performance scores according to each of the four 
models, (2) a visualization of an officer’s performance 
over time, and (3) a list of the most-significant text 
contained in the report.

Because parts of the PReSS general performance 
summary display text from the officer’s record, 
we limit our use of examples from the actual data 
because of privacy concerns. Instead, we created 
a pseudo-record, which contains notional perfor-
mance statements (like those in Table 6). We com-
bined these simulated performance statements with 
textual “noise” to illustrate how the final section 
of the general performance summary extracts the 
most-meaningful snippets from the record. We used 
selections from the first chapter of Air Force Instruc-
tion (AFI) 1-1, Air Force Standards (DAF, 2014) as 
the noise text, because the AFI text contains terms 
from the model’s vocabulary (e.g., “mission”) without 
conveying any information about performance. The 
following text box contains an example of a perfor-
mance narrative from one of the five OPRs in the 
pseudo-record.

Performance Overview Section

The first section of the PReSS general summary 
provides a simple table and visual of the overall per-
formance level in the officer’s record (Figure 5). The 
left-hand side lists the predicted probability that the 
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record would be selected by an O-5 and O-6 promo-
tion board, along with the predicted record score 
from the intermediate and senior DEDBs. Promo-
tion probabilities range from 0 to 100 percent, and 
DEDB scores range from 6 to 10. To place these 
values in context, the line graphs on the right-hand 
side show the difference between the predicted values 
(marked by blue diamonds) and the prediction for 
a record containing the average level of each term 
in the vocabulary (marked by the vertical line seg-
ment). The models appear to have high regard for 
the pseudo-record, though this is likely because the 
pseudo-record is shorter than a normal record for 

O-5 or O-6 promotion. Smoothing would further 
improve the interpretability of the predictions. 

In addition to providing a top-line review of the 
performance in the record, the performance overview 
section illustrates possible inputs that HRM per-
sonnel could use for the score or recommend imple-
mentations. The figure provides an estimated score, 
which could be used as an input into the human 
scoring process. A decision-support tool could also 
use the promotion predictions to form recommenda-
tions that influence the decisions of panel members 
(see Snoke et al., 2024, for a more detailed discussion 
of possible ML design implementations in support of 
selection boards).

Sample OPR from the Illustrative Pseudo-Record 

Rank: 2nd Lt
Date range: January 1, 2016–December 31, 2017
Performance text: Overview. The Air Force environ-
ment, whether at home station or forward deployed, 
encompasses the actions, values, and standards we 
live by each and every day, whether on- or off-duty. 
From defined missions to force structure, each of 
us must understand not only where we fit, but why. 
Mission. The mission of the United States Air Force is 
to f ly, fight, and win . . . in air, space, and cyberspace. 
To achieve that mission, the Air Force has a vision: 
The United States Air Force will be a trusted and reli-
able Joint partner with our sister Services known for 

integrity in all of our activities, including supporting 
the Joint mission first and foremost. We will provide 
compelling air, space, and cyber capabilities for use by 
the combatant commanders. We will excel as stewards 
of all Air Force resources in service to the American 
people, while providing precise and reliable Global 
Vigilance, Reach, and Power for the Nation. 80 FTW 
CGOQ...#1/214 CGOs! Crucial bearer of Wg’s primary 
msn--#1 of 154 Sq IPs in CY11 student sorties f lown; 
746 EAS Pilot of Month...#1/24 pilots; cmbt-proven 
ldr--groom for Asst Flt/CC; AC upgrade next; PDE for 
sure.

NOTE: Distracting text from AFI 1-1 (DAF, 2014; AFI text has since been revised) shown in black. Performance text shown in red.

FIGURE 5

Performance Overview Section of General Performance Summary
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Performance over Time Visualization

Directly below the performance overview section, 
the PReSS general performance summary includes 
a plot of the officer’s performance trend over time 
(Figure 6). PReSS calculates the value for each OPR in 
Figure 6 by removing the OPR text from the record, 
replacing it with average-looking text, and recom-
puting the overall score. This simple-yet-powerful 
visual helps reveal different facets of an officer’s per-
formance history that are well known to experienced 
board members. The time trends could help an HRM 
decisionmaker understand how an officer’s recent 
performance compares with the overall record, or 
to determine whether a particularly weak OPR is an 
aberration or characteristic of a broader trend. The 
trends also show which officers go through periods 
of regression, when their performance appears to 
decline, and if the officer is a “late bloomer,” whose 
recent performance indicates much more poten-
tial than the cumulative record. In the case of the 
pseudo-record, all OPRs except the fourth in the 
series contain performance statements with key 

markers, such as stratifications. The negative value 
attached to this OPR reflects the fact that the over-
all record score improves when we replace it with 
average-looking text of equal length. 

Comparing Records with Performance 
Summary Visualizations

The performance overview and performance over 
time visualizations would enable panel members 
to rapidly acquire a general awareness of the per-
formance in a set of competing records, as shown 
in Figure 7. The figure compares the outputs for an 
actual record that received a high score from the 
SDE board (top panel) with a record that received an 
average score (bottom panel). The model predictions 
on the left side show that the officer with the strong 
record is a shoo-in for promotion (99.8-percent 
chance) and should receive above-average scores 
from the DEDBs. The models predict that the officer 
with the average record is likely to make O-5, but 
there is about a 27-percent chance that they will not 
make O-6. The performance over time visuals are 

FIGURE 6

Performance Trend Section of General Performance Summary
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also quite informative. The officer with the strong 
record appears to get better with each successive OPR 
as an O-5 (i.e., all points to the right of the vertical 
dotted line), peaking at around the time that the offi-
cer would be approaching leadership opportunities, 
such as squadron command. By contrast, very few 
of the OPRs for the officer with the average record 
stand out, and the performance level trends down-
ward after this officer was promoted to O-5. 

List of High-Impact Text

The final section of the PReSS general summary 
provides a grade-by-grade list of the most-significant 
text snippets in a record. PReSS creates this sum-
mary by breaking the record into snippets using 

common punctuation, such as semicolons and 
dashes, as delimiters. Then, the system calculates the 
impact of each snippet by replacing it with an equal 
amount of average-looking text and recomputing the 
record score. All snippets with impacts above a user-
specified threshold appear in a table at the bottom of 
the general performance summary. 

Figure 8 shows part of this table for the pseudo-
record. Each snippet includes shading with pro-
gressively darker shades indicating higher impact, 
allowing the HRM decisionmaker to quickly review 
and compare performance statements at each grade. 
The table separates the list into two columns: one 
for “record-enhancing” text and one for “record-
moderating” text. 

FIGURE 7

PReSS General Performance Summary Visualizations
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The example snippets from the pseudo-record 
highlight two key points for how HRM personnel 
interpret the list of high-impact text. First, the fact 
that a snippet appears in the table does not guarantee 
that board members view it positively (or negatively). 
Rather, the precise interpretation is that the terms in 
the statement, on net, are more strongly correlated 
with board scores than average text.16 Second, it is 
not always obvious why a phrase affects the estimated 
quality of the record in either direction. In particular, 
the record-moderating text is difficult to interpret. 
We have observed that snippets that are long and 
vague tend to moderate the strength of a record. This 
is possibly useful, but not as compelling as examples 
of record-enhancing text.

This initial PReSS static report presents some 
options to decisionmakers that they could adapt in 
several ML design implementations. Further, the 
prediction method that forms the core of the PReSS 
general performance summary would work just as 
easily for any model that uses TFIDF as an input, 
should DAF analysts continue to improve upon the 
performance of the models with new alternatives.

Limitations of PReSS

The models used by PReSS accurately predict promo-
tion outcomes and DEDB scores. Additionally, the 
predicted outcomes and summaries of high-impact 
text open the door for several ML design implemen-
tations. Nevertheless, PReSS is limited in at least 
three significant ways.

First, PReSS is trained to emulate historical deci-
sions of human board members. One goal of DEDB 
and promotion boards is to identify officers with the 
greatest leadership potential and to prepare them to 
serve in positions of greater responsibility. Past deci-
sions of human board members are, at best, an indi-
rect measure of leadership potential. Thus, PReSS is 
trained using an imperfect measure of ground truth. 
To overcome this limitation, the U.S. Air Force could 
define and collect more-direct measures of the pri-
mary outcome—performance in leadership positions.

Second, the criteria used by DEDB and promo-
tion boards to score records evolve over time. As of 
this writing, PReSS gives equal weight to all records, 
regardless of age. To overcome this limitation, PReSS 
could be trained using an objective function that 
gives greater weight to more-recent records.

Third, the content of records may also evolve 
over time. For example, phrases like joint all domain 
command and control, or JADC2, may appear for the 

FIGURE 8

Summary of High-Impact Text Portion of General Performance Summary

NOTE: Though any of the PReSS models could generate this visual in its entirety, the initial version applies the IDE model to evaluate OPRs at 
grades O-4 and below and the SDE model for OPRs at grades O-5 and above.
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cers for an HRM action. These decisions are almost 
always constrained in the amount of time and effort 
the individual can spend reviewing the records and 
in the amount of expertise possessed by any indi-
vidual. Even the most-seasoned officers are more 
knowledgeable about their own functional areas 
than others, which could create blind spots in their 
judgment. 

We developed PReSS to address this common 
challenge. Because the volume of performance infor-
mation presents a difficulty in many HRM actions, a 
well-functioning ML decision-support system has the 
potential to add significant value if it reaches matu-
rity. For example, we presented earlier a narrative 
description of one Air Force Chief Master Sergeant’s 
process for systematically scoring a set of perfor-
mance statements, one by one. Without fundamen-
tally changing the level of human control in the deci-
sion, the PReSS general performance summary would 
enable the following alternative scoring process:

The chief started by taking the highest and 
lowest prescored records and saving them for 
the end of the day, when he would be running 
low on energy. In later reviewing these records, 
the chief focused on confirming the presence 
or absence of obvious significant accomplish-
ments and/or red flags. He quickly looked 
through the summaries of midrange records 
for those who had earned significant stratifica-
tions or other markers and tentatively placed 
them in the “select” pile. All panel members 
spent extra time discussing performance 
trends, strengths, and weaknesses of records 
close to the cutoff, in light of the strategic HR 
goals described in the board memorandum.

PReSS takes the first step toward helping super-
visors and HRM personnel understand and use this 
rich performance information more effectively. The 
system can further support any of the ML implemen-
tations (Table 1) that we discuss in this report and 
other reports in the series. Nonetheless, the findings 
that ML can technically be applied to a particular 
HRM process, and that it can potentially yield deci-
sions that are more efficient and effective than is cur-
rently possible, does not mean that the DAF should 
immediately adopt the system. Before doing so, the 
DAF must take steps to ensure that the system is safe. 

first time in new records that must be scored. As of 
this writing, PReSS ignores terms that are not con-
tained in data used to train the models. However, the 
models can be retrained after each board, after which 
new terms take on significance.

Conclusions and 
Recommendations

Large-scale data management and ML tools have 
become increasingly available to analytic organiza-
tions, enabling analysts to build systems that trans-
form unstructured text into decision inputs, such 
as scores or predictions. The HRM domain stands 
to disproportionately benefit from these advances 
because it relies on the “rich medium” of textual nar-
ratives (Brutus, 2010). Despite this potential, surveys 
have documented that firms have been slow to adopt 
AI-based decision-support systems for HRM pro-
cesses, relative to other areas (Chui et al., 2021). If the 
DAF is to capitalize on its infrastructure investments 
and become more “data-centric” in its approach to 
HRM, it will need to become very effective and effi-
cient at spotting, developing, and safely deploying 
decision-support systems.

Among the many ways HRM personnel use 
unstructured text, a ubiquitous class of decisions 
involves cases in which individuals review officer 
performance narratives to select a subset of offi-

PReSS takes the 
first step toward 
helping supervisors 
and HRM personnel 
understand and use 
this rich performance 
information more 
effectively.
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other HRM use cases that share these attributes. 
Assignment matching, occupational classification, 
and training curation are examples of other areas 
in which analysts could apply the same steps and, at 
a minimum, test the viability of a decision-support 
tool. DAF analytic organizations could take PReSS 
as a “worked example” to do rapid business case 
analyses of other applications, which would involve 
confirming the available data and testing the perfor-
mance of basic supervised ML modeling approaches.

Conclusion 2: Well-Established 
Computational Methods Are 
Competitive with State of the Art

In recent years, there have been breakthroughs in 
state-of-the-art large language models for interpret-
ing and generating text and neural networks for 
predicting outcomes based on complex inputs. In two 
use cases—promotion boards and DEDB boards—we 
found that relatively simple approaches such as linear 
regression and Naïve Bayes performed as well as or 
better than AttentionNet. The implication is that 
although state-of-the-art approaches may be justified 
in some cases, other long-standing techniques may be 
adequate or even preferable. 

Recommendation 2a: Begin New Exploratory 
Efforts with Simple, Explainable Approaches 

PReSS is an example in which “small data” rather 
than “big data” can still prove useful for identify-
ing predictive relationships between text patterns 
and HRM decisions, which is common in HRM 
(Tambe, Cappelli, and Yakubovich, 2019). Simple 
approaches also have the advantage of being traceable 
and explainable. In seeking out PReSS-like applica-
tions, we recommend analysts begin by exploring 
the data and optimizing the performance of simple, 
regression-based approaches before moving on to test 
more-complex (but potentially higher-performing) 
methods. 

(Another report in this series presents a framework 
for evaluating the safety of ML systems for HRM, 
and we apply the framework with PReSS as the use 
case.) In the meantime, this research offers the fol-
lowing conclusions and recommendations for related 
DAF efforts to design and implement PReSS-like 
decision-support tools.

Conclusion 1: Several Noteworthy 
Attributes of the PReSS Use Case 
Cause It to Work Particularly Well 

Several attributes of the PReSS use case cause it to 
work particularly well. First, PReSS seeks to support 
a task that human judges can perform with preci-
sion. This means that there are clear patterns for the 
model to find that help it accurately predict perfor-
mance. In fact, board processes build in checks to 
ensure that human judges evaluate records according 
to standardized criteria (as the earlier chief ’s quote 
noted: “Consistency was the key in this approach”). 
ML approaches will tend to be less accurate if they 
are attempting to support decisions in which human 
judges disagree—in that case, outcomes used to train 
models are less reliable. Second, with PReSS, a suf-
ficient sample of examples wherein human judges 
scored records is available, thanks to the high-quality 
historical records on selection boards. In other use 
cases, if sufficient data are not available, the DAF 
would have to invest in additional labor to either 
create examples for training ML models or to create 
detailed scoring rules that reach a sufficient level of 
accuracy. Third and finally, supervisors use a con-
strained language when writing performance evalua-
tions, and policies and regulations limit how supervi-
sors can use language when writing evaluations. The 
consistent way language is used somewhat reduces 
the complexity of the NLP task.

Recommendation 1a: Use Organic Analytic 
Resources to Test the Viability of Use Cases 
with These Attributes

In hindsight, because of the rich data available and 
the high precision with which human judges per-
form the task, an NLP-based performance-scoring 
tool is low-hanging fruit. Still, there are likely many 
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Conclusion 3: Data Refinements Could 
Further Improve the Functionality of 
PReSS and Other Decision-Support 
Tools

Building on the previous conclusions, this research 
shows that DAF analysts can develop simple, high-
performing systems to improve HRM decisions, even 
in the presence of imperfect data. In the process of 
designing PReSS, we identified several recommenda-
tions for the DAF to consider in the data manage-
ment realm.

Recommendation 3a: Efforts to Digitize and 
Centralize HR Records, Such As myEval, 
Could Further Streamline the Development of 
Models and Improve Performance

Though we use a rich dataset of several thousand 
HRM decisions to develop the PReSS models, we also 
show that our dataset is incomplete. This limitation 
stems from the challenges inherent in transferring 
and processing records using current data manage-
ment systems. Initial user-facing challenges aside 
(Cohen, 2022), moving to a system that accepts and 
stores all performance information digitally and in 
a format that analysts can more easily access should 
improve model quality by making more-complete 
inputs available. 

Recommendation 3b: Tailor Data Inputs for 
Particular Use Cases

Our goal for this analysis was to create a general-
purpose performance-scoring tool, which means that 
we intentionally limited the data inputs to include 
only information that would be available for each 
officer at any point in his/her career. To create a 
PReSS-like capability to support a particular HR 
decision, analysts should consider tailoring the data 
inputs to improve performance. This analysis focused 
solely on officer evaluations, but tool designers could 
tailor the method to particular processes by includ-
ing inputs specific to those decisions. For example, 
with the use case of DEDBs, rater recommendations 
and assignment histories are promising sources for 
information that could improve model performance.

A second, less obvious way to tailor data inputs 
for a particular use case is to create training examples 
for ML that exemplify alternate rating schemes that 
advance U.S. Air Force objectives. For example, in 
performance scoring, the ML models (like the board 
members they emulate) tend to focus on stratifica-
tions and push statements as the most important 
factors that drive decisions (Schulker et al., 2021). To 
steer the models in a different direction, developers 
could create new training examples that reflect the 
effects of scoring records using alternative rules.

APPENDIX

Alternative Methods for 
Predicting Performance Levels

The modeling results discussed in the main body 
of the report focus on regularized linear or logistic 
regression. To understand the performance trade-offs 
involved in selecting a method, we tested two alterna-
tives in the development process. Here, we describe 
these methods in more detail. 

Naïve Bayes

Naïve Bayes is a simple and popular method of clas-
sifying data based on Bayes Rule with the assumption 
that all input features are independent of one another 
(Hastie, Tibshirani, and Friedman, 2009). This 
means we assume that OPRs consist of an unspeci-
fied number of statements about each candidate, 
where each statement (e.g., “Great future officer–pro-
mote today”) is independent of all other statements 
(i.e., evaluators are not basing their evaluation on any 
other evaluation). Naïve Bayes then calculates the 
probability of promotion as the likelihood that the 
language used in a candidate’s OPR appeared in the 
OPRs of other candidates who were promoted or not 
promoted.

Computing this likelihood relies on a simple 
N-gram model that learns the probability of a 
sequence of words and/or tokens appearing within 
the OPRs of officers who were promoted or not 
promoted (Hovold, 2005). From these learned prob-
abilities, we can directly calculate the likelihood of 
a statement appearing in the OPRs of other officers. 
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Notes
1  The research conducted on language models was completed in 
April 2023, prior to the emergence and widespread adoption of 
large language models (LLMs), such as ChatGPT. Therefore, the 
findings and conclusions presented in this study may not reflect 
the current state of the field and should be interpreted with this 
context in mind. It is important to note that the rapid develop-
ment and evolution of LLMs may have significant implications 
for the study of language models, and future research should take 
these advancements into consideration.
2   For example, management-level review boards award “defi-
nitely promote” designations prior to a promotion board.
3   For a more detailed discussion of the different classes of AI 
and ML techniques, see Walsh et al. (2024).
4   One additional advantage of using an approach that is not 
sensitive to word order and syntax is that, if the structure of the 

For these evaluations, we allowed fourth-order 
N-grams (i.e., we consider at most four words or 
tokens at a time to capture stratification statements 
in a single N-gram—e.g., “# 1 of 25”). To compute 
DEDB scores, we treated DEDB as a classification 
task with classes spaced in half-point intervals from 
six to ten.

AttentionNet

AttentionNet (Yoo et al., 2015) takes as input a 
tokenized sequence of text and uses a series of 
neural network layers to output a promotion prob-
ability between 0 and 1. The tokenized text is passed 
through an embedding layer where each tokenized 
word is assigned 256 embeddings. Next, the embed-
dings are passed through an Attention layer, which 
assigns a weight to each embedded token. The sum of 
all weights in a sequence equals 1. The purpose of the 
Attention layer is to learn the importance of certain 
words in a sequence of text, relative to the outcome 
variable (promotion outcome). The Attention layer 
feeds into several fully connected layers, which yield 
the final predicted promotion probability.

The network is fit using Adam stochastic gradi-
ent descent on a binary cross entropy loss function 
with respect to the promotion variable or, in the case 
of DEDB, continuous scores. We trained the network 
using a train-test-validation split. The test set was 
used to tune the following hyperparameters: embed-
ding dimension, training batch-size, and dropout-
rates for the fully connected layers.

OPRs changes (for instance, by shifting from bulleted statements 
to paragraphs) but the words and phrases conveying impact 
remain, the models could still be useful.
5   Common preprocessing steps involve changing all words to 
lowercase, removing stop words that contain limited meaning 
(e.g., “the,” “and,” “of”), and applying stemming or lemmatization 
rules that strip endings and suffixes from words to reduce them 
to their root (Lane, Howard, and Hapke, 2019). We explored 
these techniques and did not see any improvement in model 
performance.
6   The stratification standardization replaces the denominator 
with the token “<amt>,” which assumes that all denominators 
are equivalent. Without this step, different denominators (e.g., 5, 
8, 10) would be treated as distinct words in the vocabulary. An 
alternative would be to strip the numerator and denominators of 
stratifications and add them in as quantitative variables (rather 
than tokens). We explored this alternative approach and did 
not see significant gains in performance, so we defaulted to the 
simpler approach.
7   It is not shown in the example, but this step replaced any dollar 
amount, such as $1.5M, with the token “<mny>.” As in the dis-
cussion about stratifications, this step discards any information 
contained in the quantitative value of the dollar amount. 
8   BPE was initially developed to solve the problem of encounter-
ing words that are not part of the original model’s vocabulary, as 
it allowed the model to reconstruct the novel word using sub-
words that it recognized. Subword tokenization is used in most 
advanced NLP applications (Wolf et al., 2020).
9   The default setting in scikit-learn’s implementation of term 
frequency inverse document frequency (TFIDF) normalizes 
the final TFIDF value by dividing the row by the L-2 norm (i.e., 
dividing by the sum of squared values). We found that this nor-
malization introduced unusual behavior in the prediction and 
summary functions when we wanted to introduce a variable 
amount of “average” text into a prediction. We discuss this more 
later.
10   During the process of linking OPRs to board scores and 
outcomes, we omitted any text that entered the record too late to 
be considered.
11   For example, the model could not readily provide accurate 
performance scores for more-junior officers who had not yet 
been nominated to meet a DEDB. 
12   If decisionmakers desire a model specifically to support the 
selection board process, incorporating these other elements 
could further improve predictive accuracy.
13   Specifically, we used L1 regularization in all models, which 
penalizes the absolute size of the model coefficients. L2 regu-
larization, which penalizes the squared coefficient, is also a 
common alternative, as is the elastic-net penalty, which is a com-
promise between the two. A key benefit of L1 is that it pressures 
irrelevant coefficients to be exactly zero (rather than just small), 
making it easy to view just the subset of the vocabulary that is 
relevant to performance.
14   Regularization constrains the sum of all coefficients at a 
prespecified value. The smaller that value, the simpler the final 
model will be. Because it tends to reduce the amount of influence 
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that variables can have in the model, regularization falls under a 
broader class referred to as shrinkage methods. 
15   For promotion boards, we use the average frequency of text 
from IPZ records to prevent above-the-zone records from bring-
ing down the average. This ensures that the prediction for the 
average record is close to the promotion rate for officers in the 
zone. For DEDBs, we used the average frequency from across all 
“looks.” 
16   In fact, very few records contain statements describing nega-
tive performance. Instead, raters differentiate performance by 
replacing highly recognizable signals with vaguely positive place-
holders. Thus, a statement along the lines of “groom for Asst Flt/
CC” could indicate average or below-average performance. 
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