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About This Report 

Military compensation is a pillar of the all-volunteer force. It is a fundamental policy tool for 
attracting and retaining personnel, and its structure—and the incentives implied by its 
structure—can affect U.S. service members’ willingness to join, exert effort, demonstrate their 
leadership potential, remain in the military, and eventually exit the military at an appropriate 
time. Military compensation is a composite of existing pay and allowances, special and incentive 
pays, health benefits, disability benefits, retirement benefits, and other benefits.  

Assessing the efficiency and flexibility of the existing and alternative compensation systems, 
especially alternatives that have yet to be tried, requires a model that allows analysis of how 
different military compensation changes affect the retention, cost, and productivity of 
individuals. The model should recognize the career decision processes of individual service 
members, the heterogeneity of their preferences, the uncertainty of the environment in which 
they make career decisions, the time path of these decisions, and the organizational structure and 
policy context in which they make these decisions. Furthermore, in the context of the military, 
given the greater operational role of the reserves and the importance of total force compensation 
and personnel policy, the model must consider both active and reserve career decisions. The 
purpose of this report is to synthesize previously published work on the RAND Corporation’s 
dynamic retention model, a model that fulfills these criteria, into a single document. This past 
research includes both RAND analyses of the retention decisions of military personnel and of 
public sector employees, such as public school teachers, state employees, and federal civilians. 
We present theory and estimates, as well as innovations and extensions of the model to military 
and civilian populations. This report will mainly be of interest to policy analysis researchers and 
analysts and those who would like to understand the broad capability and applicability of the 
dynamic retention model. While some parts of this report are accessible to a general audience, 
others are quite technical. 

The research reported here was completed in June 2023 and underwent security review with 
the sponsor and the Defense Office of Prepublication and Security Review before public release. 

RAND National Security Reseach Division 
This research was conducted within the Personnel, Readiness, and Health Program of the 

RAND National Security Research Division (NSRD), which operates the RAND National 
Defense Research Institute (NDRI), a federally funded research and development center 
(FFRDC) sponsored by the Office of the Secretary of Defense, the Joint Staff, the Unified 
Combatant Commands, the Navy, the Marine Corps, the defense agencies, and the defense 
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Summary 

The dynamic retention model (DRM) is a model that has been used to assess the retention 
effects of changes to compensation in both the military and civilian contexts. The DRM is part of 
a larger class of models known as structural models of individual behavior in which—in our 
context—people make retention decisions under uncertainty during their careers and have unique 
or heterogeneous tastes. That is, the DRM recognizes that individuals are forward-looking when 
they make their decisions (meaning they account for possible future events, such as future pay 
raises and how decisions might affect future events) and that people differ (meaning that people 
who face identical opportunities might make different choices). In the DRM, individuals make 
retention decisions in each year over their career and choose the alternative in each period—to 
stay or leave—that maximizes their utility, meaning they make the optimal choice each year 
given the information and opportunities available to them.  

The advantage of this approach to modeling retention is that the approach has a solid 
foundation in the literature and in theories of how personnel make retention decisions over their 
careers. In particular, the DRM is formulated in terms of the parameters that underlie the 
retention decisionmaking process rather than on a specific compensation system and retention 
outcomes. When such a model is estimated with empirical data on individual retention decisions, 
it can be credibly used for counterfactual analyses, permitting assessments of alternative yet-to-
be-implemented compensation systems. Furthermore, it includes a capacity to perform 
simulations of the retention and cost effects of relevant policy changes, including policies that 
have yet to be implemented.  

The flexibility and logical consistency of this behavioral model has enabled applications to 
select populations, such as military personnel in both the active and reserve components; for 
subsets of military personnel, such as pilots; and for civilian personnel, such as public school 
teachers and state and federal employees. It has also enabled analyses of different compensation 
structures and systems; alternative retirement systems; compensation systems that require multi-
year contracts; and different pay table structures, such as a time-in-service versus a time-in-grade 
pay structure. In addition, the model has enabled consideration of not only steady-state results 
but also the transition from one steady state to another.1 

This report summarizes RAND Corporation research on the DRM from a technical 
standpoint, drawing from many previous documents that have used and further extended the 

 
1 Steady state refers to the period when the entire workforce has spent their entire careers under a given 
compensation system. For example, if the organization changes its retirement system and a full career spans 30 
years, the new steady state after the change in the retirement system would occur after 30 years when entrants under 
the new retirement system have completed their entire careers. The transition period spans each of the 30 years from 
the baseline before the policy change to 30 years hence, when the new steady state has been achieved. 
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DRM. The purpose is to provide practitioners with the technical details of the DRM and recent 
extensions in one document rather than scattered across many. Our approach was to provide a 
review of RAND reports in which the DRM played a central role, focused on the model 
estimated in support of the 13th Quadrennial Review of Military Compensation (QRMC). While 
the focus in the main report is on the technical aspects of the model, we provide an informal 
introduction to the model in Chapter 2 and an annotated bibliography of the policy analyses 
conducted with the DRM and the published documents corresponding to each area of analysis in 
the appendix. 

Conclusions 
The DRM provides a practical capability for modeling the retention of military personnel, 

civil service employees, public school teachers, and state employees. It is based on a rigorous, 
logically consistent framework and has been successfully extended to cover multiple topics of 
interest, such as retirement reform and the structure of special and incentive pays. 

Like any model, the DRMs used in our analyses have limitations. We will confine our 
remarks here to the military DRM, but similar remarks could apply to our other models. The 
DRM does not explicitly model other factors that can affect retention and retirement, including 
health status and health care benefits or household factors, such as family formation, spousal 
labor supply, or the presence of children at home. The analysis focuses on retention and does not 
model the decision to enlist (or, for officers, to access) into the military. Consequently, the model 
cannot address how changes to pension design might affect the types of people who become 
soldiers. Another limitation is that the model assumes risk neutrality. The utility function is 
assumed to be linear in compensation. While conceptually a more flexible functional form could 
be used, practically speaking, the computational challenges are formidable. 

That said, the estimated models fit the observed data well. Our approach has several rich and 
realistic features that make it well suited for analyzing the retention effects of alternative 
compensation policies and pension reform. It is a life-cycle model in which retention decisions 
are made each year over an entire career, not just once. Those decisions are based on forward-
looking behavior that depends on existing and future military and external compensation. The 
model allows for uncertainty in future periods and recognizes that people might change their 
mind in the future as they get more information about staying in the military and their external 
opportunities. Furthermore, the model is formulated in terms of the parameters that underlie the 
retention decision processes rather than on the average responses to historical changes in policy. 
Consequently, it is structured to enable assessments of alternative compensation reforms that 
have yet to be tried. Put differently, the DRM is particularly suited to assess major structural 
changes in the compensation system that do not have any historical antecedent.  
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Chapter 1. Introduction 

The dynamic retention model (DRM) is a model that has been used to assess the retention 
effects of changes to compensation in both the military and civilian contexts. The DRM is part of 
a larger class of models known as structural models of individual behavior in which—in our 
context—people make retention decisions under uncertainty during their careers and have unique 
or heterogeneous tastes. That is, the DRM recognizes that individuals are forward-looking when 
they make their decisions (meaning they account for possible future events, such as future pay 
raises and how decisions might affect future events) and that people differ (meaning that people 
who face identical opportunities might make different choices). In the DRM, individuals make 
retention decisions in each year over their career and choose the alternative in each period—to 
stay or leave—that maximizes their utility, meaning they make the optimal choice each year 
given the information and opportunities available to them.  

The advantage of this approach to modeling retention is that the approach has a solid 
foundation in the literature and in theories of how personnel make retention decisions over their 
careers. In particular, the DRM is formulated in terms of the parameters that underlie the 
retention decisionmaking process rather than on a specific compensation system and retention 
outcomes. When such a model is estimated with empirical data on individual retention decisions, 
it can be credibly used for counterfactual analyses, permitting assessments of alternative yet-to-
be-implemented compensation systems. Furthermore, it includes a capacity to perform 
simulations of the retention and cost effects of relevant policy changes, including policies that 
have yet to be implemented.  

The flexibility and logical consistency of this behavioral model has enabled applications to 
select populations, such as military personnel in both the active and reserve components; for 
subsets of military personnel, such as pilots; and for civilian personnel, such as public school 
teachers and state and federal employees. It has also enabled analyses of different compensation 
structures and systems; alternative retirement systems; compensation systems that require multi-
year contracts; and different pay table structures, such as a time-in-service versus a time-in-grade 
(TIG) pay structure. In addition, the model has enabled consideration of not only steady-state 
results but also the transition from one steady state to another. 

While analysts agree that the stochastic dynamic programming approach is the state-of-the-
art and ideal approach to modeling stay-leave decisions, such as retention decisions, it is only 
comparatively recently (within the last two decades) that researchers have been able to take this 
approach without making certain simplifications.2 In part, the need for simplifications reflected 

 
2 In the context of retirement decisions, Blundell, French, and Tetlow (2016) discuss the pros and cons of a 
structural approach relative to reduced form approach. These arguments are also relevant to the retention decision. 
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the early challenges associated with the computational requirements of the model. The DRM 
requires computation of the value of staying and leaving under all possible career paths and the 
probabilities associated with that path, where these values and the probabilities are specified in 
terms of the underlying parameters of the model. Over a 30-year career, the number of paths can 
be quite large, especially when individuals are heterogeneous. In the early years of the all-
volunteer force, researchers reduced the computational burden by using an approximation 
approach called the Annualized Cost of Leaving model (ACOL).3 But the ACOL approach has 
been shown to be logically inconsistent, and it provides implausible estimates of the retention 
effects of compensation changes. Another approach is a method called calibration where the 
researchers choose rather than estimate the parameter values that fit observed data. The problem 
with this approach is that different sets of calibrated parameter values can fit the same data. That 
is, the parameters are poorly identified, and different parameters can lead to different results 
when policy analysis is conducted (Cooley, 1997). Furthermore, calibration does not provide 
standard errors of the estimates, so it is impossible to test for the statistical significance of the 
parameters.   

A different approach to reducing computational burden is to simplify the problem by finding 
a way to avoid solving the stochastic dynamic program entirely, following an approach 
developed by Hotz and Miller (1993). Unlike the DRM approach that solves for the optimal 
decision rules over the entire career as we describe in later chapters, the Hotz-Miller approach 
estimates reduced form rather than structural parameters for individual decision probabilities. It 
then inverts these probabilities to estimate the value of staying, something that would otherwise 
require solving the dynamic program. This approach assumes stationarity, meaning that all 
entering cohorts are assumed to be identical so that parameters can be estimated with cross-
sectional data or with limited time-series data. Early versions of the Hotz-Miller approach also 
assumed that observationally identical individuals facing identical opportunities would make 
identical decisions—no differences in unobserved preferences. Later versions of their approach 
allow for individual heterogeneity. 

Since 2007, the RAND Corporation has successfully implemented the DRM, despite its 
computational burden, without resorting to simplifications, such as calibration or the Hotz-Miller 
approach. Instead, the DRM is estimated with individual longitudinal data on retention rather 
than cross-sectional data, and the process of estimation involves solving the dynamic program 
for each member for a trial set of parameters using a maximum likelihood algorithm to step 
toward a new set of trial parameters to seek a better fit to the data and repeating the process until 
convergence (no further appreciable improvement in model fit).    

 
3 The approximation was to exchange the expectation and maximization operators in the value function; that is, to 
compute the maximum of the expected values instead of the expected value of the maximum. This approximation 
does not capture the value associated with an individual being able to choose between alternatives once new 
information has been revealed. 
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This report summarizes RAND research on the DRM from a technical standpoint, drawing 
from many previous documents that have used and further extended the DRM. The purpose is to 
provide practitioners with the technical details of the DRM and recent extensions in one 
document rather than scattered across many. While the focus is on the technical aspects of the 
model, we provide an informal introduction to the model in Chapter 2 and an annotated 
bibliography of the policy analyses conducted with the DRM and the published documents 
corresponding to each analysis in the appendix. 

Organization of This Report 
In Chapter 2, we lay the groundwork for our presentation of RAND’s DRM by walking 

through the Gotz-McCall model (Gotz and McCall, 1984). We also highlight more rigorously the 
challenges associated with estimating the model. In Chapter 3, we turn to RAND’s 
implementation of the model. We provide a brief history of RAND DRM work since the early 
1990s and then provide a technical presentation of a recent implementation of the DRM. 
Specifically, we present theory and the methodology for estimating the model, as well as 
descriptions of the data used. In Chapter 4, we show the estimates for the DRM we created in 
support of the 13th Quadrennial Review of Military Compensation (QRMC). We also present 
model fits and several extensions to the basic model, including the promotion process and how 
performance—as measured in terms of promotion speed relative to one’s peers—might be 
affected by ability and effort supply. In Chapter 5, we consider four additional extensions to the 
model: (1) adding regression variables to change the mean and variance of the taste distribution, 
(2) modeling retention when individuals can choose multi-year contracts, (3) modeling the 
transition from one steady state to a new steady state, and (4) using incumbents to supplement 
short panels in estimation. In Chapter 6, we share some concluding remarks—reflecting on the 
past and looking toward the future. The appendix presents an annotated bibliography of the 
policy analyses conducted with the DRM and the published documents corresponding to each 
analysis. 
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Chapter 2. Modeling Retention 

Simulation models using the DRM approach have been available since the late 1970s, but it 
has been difficult to use because it is computationally intensive. Advances in both computing 
software and hardware over the past two decades have eliminated this drawback. Using the 
DRM, we developed a method for statistically estimating model parameters using historical 
career data and simulating the effect of changes in personnel policies on retention. In this 
chapter, we first give an informal description of the basic concepts underlying the DRM and then 
give a mathematical description of a simplified version of the Gotz-McCall (1984) model, the 
original DRM. This chapter draws extensively from Mattock and Arkes (2007). 

A key attribute of this approach is that it focuses on individual behavior. Figure 2.1 shows 
our concept of the process leading to a decision to stay or leave. In this figure, we use the Air 
Force as an example, but this figure could apply to any service. Two aspects of the figure merit 
comment. One is that individual retention decisions result from a complex interaction of many 
influences. Certainly, service compensation policies influence a service member’s decision to 
stay or leave. However, the strength of that influence varies depending on the individual. A 
service member who really enjoys military service (has a “taste” for it) might elect to remain in 
the service for less compensation than would an individual with less of a taste for service. 
External influences are important as well. If the civilian job market is robust and the individual’s 
skills are in demand, then the motivation to leave would be relatively greater than if the market is 
poor or the individual’s skills are not prized. A second point worthy of comment (which might 
seem obvious) is that aggregate or group behavior is driven by individual decisions. Looking at 
how individuals make decisions gives us more insight into the retention process than does 
studying only the mythical average member. 

It is important to focus on the behavior of specific individuals to arrive at parameter 
estimates that describe the preferences of service members regarding key aspects of their 
environment. Using the DRM, we model a service member’s decision process and take into 
account the attempts that individuals make to optimize their futures. By modeling individual 
decisions, any given parameter estimate is less dependent on specific policies in effect during the 
period covered by the data than it would be using a traditional regression approach. If we 
construct a model of the internal decisionmaking process of a service member that takes into 
account regular military compensation, the military retirement system, and civilian career 
opportunities, then estimates of the remaining parameters depend less on these factors. This type 
of model can be used to predict the effect of a broader variety of compensation and personnel 
policy options. On the other hand, if we construct a retention model for service members that did 
not include the design of the military retirement system in the service member’s decisionmaking 
calculus, then the estimates provided by that model could be used with confidence only if all 
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aspects of the retirement system remained unchanged, because the estimated parameters 
implicitly depend on the specifics of the retirement system in effect during the period covered by 
the data used to estimate the parameters of the model. (By specifics, we mean, for example, the 
vesting rules, any defined benefit component, and any defined contribution component.) Many 
traditional regression models fall into this category. 

Figure 2.1. Influences on Individual Retention Decisions 

 

SOURCE: Reproduced from Mattock and Arkes (2007). 

Explicitly modeling individual behavior also allows for individuals being different. People’s 
behavior can differ because of both observable and unobservable characteristics. For example, a 
service member’s decision to stay in the military can be affected both by their particular 
promotion history (an observable characteristic) or their taste for military service (an 
unobservable characteristic). The DRM allows for differences in both observed and unobserved 
characteristics, whereas some other models, such as ACOL, only allow for differences in 
observable characteristics. 

One of the key features of the DRM is that it explicitly models a service member’s decision 
calculus as taking into account future uncertainty. Other models of retention—such as ACOL, 
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ACOL 2,4 or the Ausink and Wise (1993) “option value”5 model—do not explicitly include 
future uncertainty in the service member’s decision calculus. Including uncertainty enables us to 
model flexibility—the ability to make or change decisions when new information comes to light. 
This is sometimes referred to as an option value and is a common concept to those who trade in 
securities. The ability to buy or sell an option at a particular price has value: It enables a person 
to hedge risk. A concrete example might help illustrate this point. Readers who are more 
interested in the conceptual framework of the DRM might wish to skip to the next section. 

Modeling the Value of Flexibility—An Example 
Consider the case of betting on a coin flip. A head means that the individual wins $1, and a 

tail means $0. Thus, the expected value of the bet is 

1
2 $1.00 +

1
2 $0.00 = $0.50. 

Now consider a case in which (1) there are two coins that each have an equal chance of 
coming up heads or tails and (2) the bettor can choose either coin before it is flipped. The 
expected value from choosing a coin is the same as that in the previous example, $0.50. 
However, now consider the case in which the bettor can choose between the two coins after they 
are flipped. If both come up heads, the bettor can choose either one and receive $1. If only one 
comes up heads, the bettor can choose that one and still receive $1. If both come up tails, then 
the bettor receives nothing. The expected value of this bet is $0.75 because three times out of 
four the bettor can receive $1. The following formula describes this result: 

1
4 $1.00 +

1
4 $1.00 +

1
4 $1.00 +

1
4 $0.00 = $0.75. 

So, the ability to make an informed choice has an expected value of $0.25 ($0.75–$0.50 = 
$0.25). If all anyone cared about was the expected value of the return on the bet, then to get the 
bettor to give up the opportunity to choose after the coins had been flipped, they would have to 
be compensated by at least $0.25 because the value of the bet with no choice ($0.50) plus 
compensation for losing the opportunity to choose ($0.25) would just equal the value of a bet 
with choice ($0.75).  

The exact magnitude of the option value will depend on the size of the random shocks 
(variation in, for example, civilian opportunities or health events) service members are subject to 
year to year. Service members can experience random shocks from both the civilian and military 

 
4 ACOL 2 is a version of the ACOL model that allows for unobserved heterogeneity. 
5 In the Ausink and Wise model, the member compares the utility of leaving now with the maximum value of 
expected future utilities associated with postponing leaving. 
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sides. On the military side, a service member might receive a good or bad assignment, might be 
passed over for promotion, and so on. On the civilian side, a service member might have the 
opportunity to take a high-paying civilian position, might see that civilian job opportunities have 
declined, might find that he or she needs to leave the service to care for an ailing parent, and so 
on. While we cannot directly observe the distribution of these shocks, we can statistically infer 
distribution of the difference between the military and civilian shocks in terms of dollars by 
using the DRM.  

The approach taken by the ACOL, ACOL 2, and Ausink and Wise models is to calculate the 
maximum of the expected values rather than the expected value of the maximum. In the simple 
example we gave previously, the maximum of the expected values was $0.50, while the expected 
value of the maximum was $0.75. So, the maximum of the expected values can be a very poor 
approximation to the expected value of the maximum, because it does not reflect the value 
associated with being able to make an informed choice.  

A Retention Model 
Figure 2.2 depicts a simple retention model. In this model, each service member makes a 

decision at the beginning of the period to either stay or leave. If the member stays, they collect 
the benefits associated with remaining in the military for a year, including the value of the option 
to stay or leave at the next decision point. If the member leaves, they get the value of a civilian 
career path starting in that period. In this simple model, behavior is deterministic. This model 
implicitly assumes that service members with identical observable characteristics would behave 
identically. It takes no account of the possibility that nominally identical service members might 
make different decisions about whether to stay or leave. 

Figure 2.2. Simple Retention Model 

 

SOURCE: Reproduced from Mattock and Arkes (2007). 

Modeling Uncertainty—Taste  
This simple retention model is a start, but it is insufficient for our purposes because it does 

not allow for differences among observationally identical individuals. Allowing for differences 
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in individual retention behavior requires the modeling of uncertainty. Figure 2.3 depicts a more 
sophisticated model that injects uncertainty and considers differences in individuals’ 
characteristics or in the environment that an individual faces.  

Figure 2.3. Modeling Individual Taste and Uncertainty 

 

SOURCE: Reproduced from Mattock and Arkes (2007). 

In this example, both the individual being modeled and the analyst face uncertainty. It begins 
with an individual who has a certain taste for military service. We assume that an individual is 
aware of their taste for military service and makes decisions accordingly, but this taste is not 
known to the analyst. The individual then experiences a positive or a negative shock. The value 
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of the shock is unknown in advance to either the service member or the analyst. The shock 
affects the value that the individual places on staying in the military until the next decision. The 
shock can make an individual place either a higher value on staying (a positive shock) or a lower 
value on staying (a negative shock). Thus, the analyst faces uncertainty over both the value that a 
particular individual places on staying in the military and the value of the shock they might 
experience in any given period.  

One analytical approach to this problem is to assume that taste is distributed across a 
population according to some parameterized distribution and then estimate the parameters of the 
taste distribution in a statistical model. Figure 2.4 presents one such estimate, in this case one 
developed for pilots who graduated from the Reserve Officer Training Corps (ROTC). 

 Figure 2.4. Distribution of Taste for Air Force Pilot ROTC Graduates 

 

SOURCE: Reproduced from Mattock and Arkes (2007). 

The figure shows the estimated distribution of the taste for military service held by the 
population of ROTC accession pilots when they reach their first stay-versus-leave decision 
points. The dollar values shown represent the monetary equivalent of the intrinsic value that an 
individual places on a year of military service (in addition to compensation and other benefits). A 
service member with a strong taste for military service would require relatively more money to 
be induced to leave than a member with a weak taste. This curve reflects the initial distribution 
of taste for the group. The shape of this curve will change over time as service members leave 
the service. That change is reflected in the curves displayed in Figure 2.5, which shows how the 
population distribution of taste changes over time.  
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Figure 2.5. Population Distribution of Taste Changes with Increase in Tenure 

 

SOURCE: Reproduced from Mattock and Arkes (2007). 

Figure 2.5 shows that the population distribution of taste for service increases with tenure for 
a notional service member population. This is relatively intuitive, because those who value 
active-duty service will tend to stay longer. The chart shows less taste for service among those 
with six years of service (the curve farthest to the left), the greatest taste among those with 19 
years of service (the curve farthest to the right), and taste distributions gradually shifting from 
left to right with each successive year of service. 

Modeling Uncertainty—Shocks 
We assume that service members face shocks every year (which, as we noted earlier, are 

unanticipated events that will affect their desire to remain in active service). These shocks can be 
positive or negative. A positive shock is one that strengthens their preference for staying and a 
negative shock is one that has the opposite effect. Service members who choose to leave forgo 
the possibility of future positive shocks (e.g., a desirable assignment, an accelerated promotion, 
the opportunity for new and interesting training). The model assumes that the shocks are 
independently and identically distributed across the population. 

Mathematical Description of a Simple Version of the DRM 
We will begin explaining our approach to implementing the DRM by showing the equations 

for a simple stay-leave model. This model is very similar to the original Gotz-McCall (1984) 
model and the later Daula and Moffit model (1995). For simplicity, the model omits the Markov 
promotion process and the selection for reserve versus regular commission present in the original 
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Gotz-McCall model. We will then show how these equations can be used to derive an expression 
for the probability of staying and how the probability of staying expression can be used in 
conjunction with empirical career data to form a likelihood function that will allow us to estimate 
the structural parameters of our model. 

The model consists of two equations, one giving the value of staying for an additional year 
and revisiting the stay-versus-leave decision and one giving the value of leaving. A service 
member decides to stay if the value of staying is greater than the value of leaving. To turn this 
into a statistical model, we add assumptions about the distribution of an independently and 
identically distributed random shock term and also about the distribution of the members’ taste 
for military service. 

The non-stochastic value of leaving is represented by 

, 

and the stochastic value of leaving is represented by 

 

where 
 is the value of leaving at time t, 
 is civilian earnings at time t, 

 

is the value of future civilian earnings (where  is the annual discount rate), 

 is the retirement benefit accruing to the member if they leave at time t, and 
 is random civilian shock at time t. 

The non-stochastic value of staying is represented by 

, 

and the stochastic value of staying is represented by 

 

where 
 is the value of staying at time t, 
 is individual taste for serving in the military, 
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 is military earnings in the current period t, 
 is the discounted expected value of being able to choose to stay or 

leave in the future, with  being the discount rate, and 

 is the random military shock at time t. 
Retention probability in period t is represented by 

 

where 
= the difference between the civilian and military shocks at time t. 

The individual will decide to stay in the military if the value of staying is greater than the 
value of leaving. If a probability distribution is set for the difference between the random 
military shock and the random civilian shock, the probability that an individual service member 
with a particular taste will stay can be computed. 

In this example we assume that  is normally distributed with mean zero and variance . 
This leads to a closed-form solution for the expected value of the maximum of staying or 
leaving, specifically: 

 

where  and  are the cumulative distribution function and probability density function 
(PDF) of the unit normal distribution.  

In this equation, the first term is the probability of staying multiplied by the value of staying, 
the second term is the probability of leaving multiplied by the value of leaving, and the third 
term shows the expected value to the individual of being able to choose whether to stay or leave. 
This closed form solution is desirable; otherwise, the expected value of the maximum would 
have to be calculated via numerical integration, which is a relatively slow and imprecise process. 

The probability of an individual with taste facing shock distribution  choosing to stay 
in period  can now be computed using: 
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The probability of leaving is simply: 

. 

The following example applies this probability to assess the likelihood of a sequence of 
events. If we observe a particular individual whose service obligation completed at  
choosing to stay at  and leaving at time , we can compute the joint probability of this 
sequence of events like so: 

. 

Similarly, if we observe an individual leaving immediately at the conclusion of their service 
obligation, then the probability is . If we observe an individual staying for two 
periods and then do not observe what they do in the third period, the probability is 

 

In general, the probability of observing someone staying for s periods will be 

 

and the probability of observing someone stay for s periods and then leaving will be 

 

Of course, this probability is conditioned on the unobservable taste parameter . In this 
example we assume that  is extreme-value distributed with mode  and scale parameter . 

We will use  to denote the cumulative distribution fnction of this distribution. We can use 
this distribution to construct an expected probability for a particular sequence of events. 

If a person leaves immediately after the conclusion of their service obligation at t, the 
expected value of the probability is 
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If a person stays for s periods and then leaves, the expected value will be 

 

Thus, the likelihood for the entire sample will be 

 

Challenges Posed in Estimating the Model 
Dynamic programming models have a reputation for being difficult to estimate. For example, 

the pioneering work of Gotz and McCall (1984) did not provide standard errors for the model 
estimates because of the computing challenges. With the advent of faster computers and 
improvements in optimization algorithms, the task has become easier, but can still be 
challenging. 

The main challenge is optimizing the likelihood function. Because of the approximation 
inherent in machine arithmetic—and, in particular, numerical integration—calculating numerical 
derivatives is not possible at all points of the likelihood surface. In addition, depending on the 
type of model, there can be many local maxima—many points on the surface where the gradient 
will be at or near zero. This means that most hill-climbing algorithms will generally fail. 

An additional challenge is posed by the need to integrate out heterogeneity. As there is no 
closed-form solution for the integral in the likelihood function, it has to be estimated 
numerically. Unfortunately, many modern algorithms for integration, even those that recursively 
subdivide the interval of integration to a high depth, do not perform well when faced with 
functions that are near zero over most of the interval (Piessens et al., 1983).  

The weak identification of the model parameters also poses a challenge, because it means 
that straight maximum likelihood estimates of the parameters might veer wildly from values that 
are credible. The method used in the original work of Gotz and McCall on Air Force officer 
retention to assure identification is not available to us because officers are no longer granted 
regular or reserve commissions when entering the officer ranks. Gotz and McCall posited that 
the individuals with higher gamma (higher taste) were more likely to be granted a regular 
commission. The Gotz and McCall likelihood function used a posterior distribution for gamma 
that was conditional on whether an officer was granted a regular or reserve commission, the 
relative proportion of the officers given a reserve commission, and a selectivity parameter that 
was estimated along with the other model parameters. (In a personal communication to one of 
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the authors [Mattock] in 2002, Glenn Gotz stated that he could not get the original model to 
converge without adding this selectivity term.)  

Later RAND projects addressed the weak identification challenge in different ways: In the 
Mattock and Arkes (2007) report on Air Force pilot retention, the authors found that model 
parameters could be identified given information on active-duty service obligation (ADSO) 
associated with pilot training and the structure of multi-year contracts. In Asch et al. (2008) and 
in later RAND reports on military personnel retention, authors found that including information 
on reserve component participation in addition to active retention helped to identify model 
parameters, in particular those associated with taste. 

These challenges are difficult but not insurmountable. Judicious simplifications—such as 
using a wage trajectory rather than modeling the promotion process and using the pay table, as 
well as the other simplifications mentioned in Chapter 1—can help to make the dynamic 
program computationally feasible and improve computational efficiency by avoiding repeatedly 
solving identical subproblems by using caching speeds computation of dynamic programs. 
Furthermore, using Halton sequences to generate antithetic pairs of numbers when choosing 
support points for the taste distribution helps in calculating the weighted average over a 
population of interest (i.e., integrating out heterogeneity). 

Summary 
Modeling individual behavior requires modeling uncertainty explicitly. The individual com- 

ponents of uncertainty include elements that are known to the service member but unknown to 
the analyst, such as individual taste for military service relative to their next best alternative. The 
components of uncertainty also include elements that are unknown to both the service member 
and the analyst, such as future environmental shocks and future promotions. By modeling how 
these elements affect an individual’s decisionmaking process, we can gain a better understanding 
of how an individual might value future career flexibility in the face of uncertainty. Furthermore, 
uncertainty can be explicitly captured in a mathematical model with structural parameters that 
can be estimated using empirical data—the DRM. 

  



  16 

Chapter 3. The RAND Dynamic Retention Model  

RAND researchers built on the Gotz-McCall (1984) DRM and addressed the challenges 
associated with estimation. This chapter provides technical details of RAND’s approach, using 
the analysis conducted in support of the 13th QRMC in 2020 as an example. This model was 
developed and used to assess the retention, cost, and performance effects of reforming the 
military pay table. We will first give an informal description of the DRM used for the 13th 
QRMC then discuss the mathematical structure of the DRM and how we extended it to account 
for promotion. We will then discuss the data used for estimation and the estimation 
methodology. In the next chapter, we will discuss estimates, model fit, and the simulation 
capability that we developed to simulate pay table reform.  

The example of the DRM developed for the 13th QRMC is a good one for showing the 
technical details of the model because it shows many of the innovations made to the DRM since 
RAND first began developing the DRM. However, we note that we have developed the DRM 
capability and applied it in other contexts for specific populations or policy questions, and, 
arguably, these other studies could be additional examples.6 We therefore preface our description 
of the 13th QRMC DRM capability with an overview of these other studies. The appendix 
provides a list of the studies, organized by policy area. Furthermore, we provide an overview of 
four of these other examples in Chapter 5. 

Overview of RAND Dynamic Retention Model Research 
The purpose of this overview is to place the example DRM developed for the 13th QRMC in 

the context of the broader set of studies using the DRM. A more complete summary can be found 
in the appendix. Readers primarily interested in the 13th QRMC DRM capability might wish to 
proceed to the next section. 

Except for work by Daula and Moffitt (1995), who estimated the DRM with data from two 
enlisted Army cohorts from the 1980s, no DRM analyses occurred following the seminal work 
by Gotz and McCall until the 1990s, owing to the computational complexity of the model given 
the computer technology available in the 1980s. However, that began to change in the 1990s. 
The Gotz-McCall model was extended in several ways in the 1990s. Asch and Warner (1994b) 

 
6 The DRM is not a model that can be taken off the shelf and applied by any analyst to any compensation-related 
question. Rather, it is a capability that can serve as a foundation for building models to address personnel policy 
questions that cannot already be addressed by existing DRMs. Straightforward policy explorations involving 
changing inputs (such as military or civilian earnings) may be done within any estimated DRM. More-complex 
policy explorations that introduce new choices by the service member (such as special pays that are conditional on 
the choice of an additional ADSO) might require an extension if this kind of choice is not already reflected in the 
DRM. 
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incorporated performance into the model, and Asch and Warner (1994a) calibrated a simulation 
model that enabled them to estimate the steady-state retention, performance incentives, and cost 
implications of alternative military compensation and retirement reform policy alternatives. 
Asch, Johnson, and Warner (1998) extended the simulation model further to estimate the 
retention, cost, and productivity effects of transitioning to a military retirement system that 
resembled the Federal Employees Retirement System. An updated version of the Asch-Warner 
simulation model (1994b) was used to assess retirement alternatives for the Defense Advisory 
Committee on Military Compensation (DACMC). Asch and Hosek (1999) also employed the 
simulation model to analyze the behavioral and cost implications of the TRIAD legislation 
included in the National Defense Authorization Act of 2000 that addressed concerns among 
military leadership in the late 1990s (when the services struggled to meet their military recruiting 
and retention targets) about adverse effects on retention and morale because of the reduced value 
of retirement benefits under the reform plan implemented in 1986 (often referred to as REDUX). 
Hosek et al. (2004) incorporated the enlistment decision into the DRM framework in a study of 
the recruitment and retention of information technology (IT) personnel. They also modeled skill 
accumulation—the learning of IT skills through training and experience provided by the 
military—with the assumption that the skills are transferable and thus increase the civilian 
opportunity wage. The authors included a switching cost that is imposed if the individual 
breaches their military contract by leaving before the end of the term. In calibrating their model, 
the authors estimated the distribution of the preference for military service in the youth 
population. They also analyzed the attractiveness of military IT occupations (compared with 
non-IT occupations), where IT occupations (by providing valuable, transferable training) provide 
a pathway to high-paying civilian jobs when the service member leaves the military.  

Beginning in the 2000s, RAND estimated the DRM parameters rather than relying on a 
calibrated model. Mattock and Arkes (2007) adapted the Gotz-McCall approach to estimate a 
model that allowed analysis of incentive pay for Air Force officers, including a provision 
requiring a multiyear commitment to receive aviation bonus pay. Advances in computer 
hardware and software made estimation of the DRM more feasible. In Asch et al. (2008), RAND 
estimated a DRM of active and reserve retention using data provided by the Defense Manpower 
Data Center (DMDC) for the 10th QRMC. The model was estimated for each service branch 
(Army, Navy, Air Force, and Marines), and the parameter estimates were used to conduct policy 
simulations of alternative military retirement reform options using models for the enlisted force. 
Asch et al. (2008) provided a rigorous theoretical foundation for all the subsequent models we 
discuss in this report. 

From 2008 to 2017, RAND conducted a series of studies that further developed the DRM and 
used the simulation capability to focus on retirement reform options, providing analyses that 
supported the Military Compensation and Retirement Modernization Commission and an Office 
of the Secretary of Defense working group that developed early versions of the Blended 
Retirement System (BRS). RAND’s analysis of the retention and cost effects of the BRS are 
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summarized in Asch, Mattock, and Hosek (2017) and included new model estimates for the U.S. 
Coast Guard, a service previously omitted in earlier DRM analyses. In addition, the DRM was 
used to consider alternative reserve retirement reform proposals (Mattock, Hosek, and Asch, 
2012), and RAND extended the DRM for the Army reserve component to consider U.S. Army 
Reserve and Army National Guard retention separately (Asch, Mattock, and Hosek, 2019) and to 
simulate the retention effects of alternative retirement policies in the transition to the steady state 
for the reserve components (Mattock, Asch, and Hosek, 2014).   

Other analyses focused on the retention and cost effects of special and incentive pay 
alternatives for selected populations. These include several studies on Air Force pilots and the 
effects of changes in aviator bonus and flight pay to improve retention in the face of increased 
major airline hiring (Mattock et al., 2016). These studies also includes analyses of reenlistment 
bonuses for career enlisted aviators in the Air Force (Tong, Mattock, and Asch, 2021), analyses 
of special pays for special operations (Asch et al., 2019), and for mental health care providers 
(Hosek et al., 2017). RAND also expanded the simulation capability to consider changes in the 
military pay table for those with more than 30 years of service (Asch et al., 2018; Asch, Hosek, 
Kavanagh, et al., 2016) and the role of separation pay in facilitating downsizing (Mattock, 
Hosek, and Asch, 2016). 

RAND reestimated the DRM with four additional years of data (covering active-component 
retention and reserve-component participation for members who entered in 1990 and 1991 and 
were followed through 2016) and further expanded the DRM to include promotion in its analysis 
in support of the 13th QRMC (Asch, Mattock, and Tong, 2020). RAND researchers also 
incorporated metrics of performance in the simulation capability and the model was used to 
simulate the retention, cost, and performance implications of reforming the military pay table to 
a TIG rather than the existing time-in-service (TIS) format. To further describe the details of the 
DRM, we provide details of this model in the following section. 

The DRM for Department of Defense Civil Service Personnel, Public School Teachers, 
and State Employees 

We further built on the DRM capabilities that RAND developed for uniformed military 
personnel to focus on modeling the retention of civilian populations. We have now applied the 
DRM to Department of Defense (DoD) civil service personnel, public school teachers, and state 
employees.  

Our first application of the DRM to DoD civil service personnel was in Asch, Mattock, and 
Hosek (2014), which modeled the retention behavior of a single cohort and used model estimates 
to assess the retention effects of pay freezes, changes in mandated retirement contributions, and 
other federal compensation changes. RAND further enhanced the model for DoD civilians by 
allowing taste to differ across multiple cohorts and by veteran status (Knapp, Asch, et al., 2016). 
This model was used to consider the downsizing effects of a voluntary separation incentive 
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(Asch, Hosek, Mattock, et al., 2016). Finally, Mattock et al. (2022) estimated a model of the 
retention of DoD cyber workers and considered using training as a retention lever. 

Recently, many state governments have legislated reforms or are contemplating reforms to 
teachers’ and state employees’ retirement systems for new and future employees as a means of 
addressing large unfunded liabilities of their pension plans. Our first application of the DRM 
capability to state and local employees was to public school teachers for the Chicago Public 
Schools (Knapp, Brown, et al., 2016). The initial model was enhanced and broadened in its 
application to examine teachers and state employees in South Carolina (Knapp, Asch, and 
Mattock, 2021) and further applied to teachers across three states (Asch, Knapp, and Mattock, 
2022). RAND also applied the model to examine ex ante prediction and ex post realization of a 
voluntary retirement incentive offer for teachers in Knapp et al. (2023). These studies led to a 
series of journal articles (Knapp et al., 2023; Hosek et al., 2023). 

The 13th QRMC DRM Capability 
Like the capability developed for the 10th QRMC, the DRM models estimated for the 13th 

QRMC allow service members to choose each year whether to continue in the active component 
or to leave; and once having left to either be a “pure” civilian or a civilian worker who also 
participates in the reserve component. Once having left, the individual can revisit the choice to 
participate in the reserve in each period. A key technical innovation in this variant of the DRM 
relative to earlier versions reviewed previously was to model the effect of promotion, which was 
key to being able to model a TIG pay table. In addition, we extended the model to consider how 
performance—as measured in terms of promotion speed relative to one’s peers—might be 
affected by ability and effort supply. By ability we mean characteristics of individual service 
members that increase or decrease their promotion speed relative to their peers, including innate 
cognitive intelligence and other characteristics that lead to success (e.g., ability to work well in 
teams, work in a hierarchical organizational structure, resilience to changes such as frequent 
moves and new assignments). By effort supply, we refer to how hard and effectively members 
work in terms of achieving tasks that lead to faster promotion. We developed this capability so 
that we could run simulations and provide estimates of the effect of the TIG pay table on overall 
retention, retention of individuals with higher innate ability, and the average ability and level of 
effort exerted by individual service members. The results of our analysis are reported in Asch, 
Mattock, and Tong (2020). The text in this chapter draws heavily from this report and Asch et al. 
(2018). 

The DRM Mathematical Structure 

The DRM used for the 13th QRMC, similar to the DRM used for the 10th QRMC, is a model 
of the service member’s decision—made each year—(1) to stay in or leave the active 
component, (2) for those who leave, to choose whether to participate in a reserve component, and 
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(3) if participating, whether to continue as a reservist. These decisions are structured as a 
dynamic program in which the individual seeks to choose the best career path, but the path is 
subject to uncertainty. The model was formulated in terms of parameters that are estimated with 
longitudinal data on retention in the active component and participation in the reserve 
component, and these data are then used to see how well the estimated model fits observed 
retention. We used the estimated parameters in policy simulations. 

In the DRM, a set of parameters underlies the individual service member’s retention 
decisions, and a goal of our analysis was to use individual-level data on active retention and 
reserve participation to estimate the parameters for both enlisted and officers for each service. 
We discuss the data we use in more detail later in this chapter, but, in short, we use the Defense 
Manpower Data Center’s (DMDC’s) Work Experience File (WEX) to track individual careers 
from 1990 to 2016. 

Model Overview 

In the behavioral model underlying the DRM, in each period, the individual can choose to 
continue on active duty, leave the military to hold a job as a civilian, or leave the military to join 
a reserve component and hold a job as a civilian. The individual bases their decision on which 
alternative has the maximum value. The model assumes that an individual begins their military 
career in an active component.  

Individuals are assumed to differ in their preferences for serving in the military. Each 
individual is assumed to have given, unobserved preferences for active and reserve service, and 
these preferences do not change. The individual member, officer or enlisted, has knowledge of 
military pay and retirement benefits, as well as civilian compensation. In each period, there are 
random shocks associated with each of the alternatives, and the shocks affect the values of the 
alternatives. As shown next, the model explicitly accounts for individual preferences and military 
and civilian compensation, and, in this context, shocks represent current-period conditions that 
affect the value of being on active duty, being in the selected reserve while also being a civilian 
worker (or reserve, for short), or being a civilian worker and not in the reserve (civilian, for 
short). Examples of what might contribute to a shock are a good assignment; a dangerous 
mission; an excellent leader; inadequate training or equipment for the tasks at hand; a strong or 
weak civilian job market; an opportunity for on-the-job training or promotion; the choice of 
location; a change in marital status, dependency status, or health status; the prospect of 
deployment or deployment itself; or a change in school tuition rates. These factors might affect 
the relative payoff of being in an active component, being in a reserve component, or being a 
civilian. The individual is assumed to know the distributions that generate the shocks, as well as 
the shock realizations in the current period but not in future periods.  

Depending on the alternative chosen, the individual receives the pay associated with serving 
in an active component, working as a civilian, or serving in a reserve component while also 
working as a civilian. In addition, the individual receives the intrinsic monetary equivalent of the 
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preference for serving in an active component or serving in a reserve component. These values 
are assumed to be relative to that of working as a civilian, which is set at zero. 

In considering each alternative, the individual considers their current state and type. State is 
defined by whether the member is active, reserve, or civilian, and by the individual’s active 
year(s) of service (YOS), reserve YOS, total years since first joining the military, pay grade, and 
random shocks. Type refers to the level of the individual’s preferences for active and reserve 
service. The individual recognizes that today’s choice affects military and civilian compensation 
in future periods. Although the individual does not know when future military promotions will 
occur, he or she does know the promotion policy and can form an expectation of military pay in 
future periods. Furthermore, the individual does not know what the realizations of the random 
shocks will be in future periods. The expected value of the shock in each state is zero. Depending 
on the values of the shocks in a future period, any of the alternatives—active, reserve, or
civilian—might be the best at the time. Once a future period has been reached and the shocks are 
realized, the individual can reoptimize (i.e., choose the alternative with the maximum value at 
that time). The possibility of reoptimizing is a key feature of dynamic programming models that 
distinguishes them from other dynamic models. In the current period with future realizations 
unknown, the best the individual can do is to estimate the expected value of the best choice in the 
next period; i.e., the expected value of the maximum. Logically, this will also be true in the next 
period, the one after it, and so forth—so the model is forward-looking and rationally handles 
future uncertainty. Moreover, the model presumes that the individual can reoptimize in each 
future period, depending on the state and shocks in that period. Thus, today’s decision accounts 
for the possibility of future career changes and assumes that future decisions will also be 
optimizing.

Mathematical Formulation

We denote the value of staying in the active component at time t as

𝑉𝑉!(𝑘𝑘") = 𝑉𝑉#(𝑘𝑘") + 𝜖𝜖"#,

where is defined as

𝑘𝑘" = 𝑘𝑘"(𝑎𝑎𝑎𝑎" , 𝑟𝑟𝑟𝑟" , 𝑡𝑡, 𝑔𝑔")

or the vector of number of active years (𝑎𝑎𝑎𝑎") at time t, the number of reserve years (𝑟𝑟𝑟𝑟") total 
years since initial enlistment or accession, and grade (𝑔𝑔"). 𝑉𝑉#(𝑘𝑘") is the non-stochastic value of 
the active alternative, and 𝜖𝜖"# is a random shock. 

The value of leaving at time t is

𝑉𝑉$(𝑘𝑘") = max[𝑉𝑉%(𝑘𝑘") + 𝜔𝜔"% , 𝑉𝑉&(𝑘𝑘") + 𝜔𝜔"&] + 𝜖𝜖"$,
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where the member can choose between reserve (R) and civilian (C). Civilian means working at a 
nonmilitary job, and reserve means participating in a reserve component and working at a 
nonmilitary job. The value of reserve is given by 𝑉𝑉%(𝑘𝑘") + 𝜔𝜔"%, where 𝑘𝑘" is defined previously, 
while the value of civilian is given by 𝑉𝑉&(𝑘𝑘") + 𝜔𝜔"& . We model the reserve or civilian choice as 
a nest and assume that the stochastic terms follow an extreme value type I distribution, which 
leads to a nested logit specification in the estimation phase of this structural model.7 The within-
nest shocks to the reserve or civilian choice are given by 𝜔𝜔"%and 𝜔𝜔"& , while the nest-level shock is 
given by 𝜖𝜖"$.

We allow a common shock for the reserve and civilian nest, 𝜖𝜖"$ (because an individual in the 
reserves also holds a civilian job) and shock terms specific to the reserve and civilian states, 
𝜔𝜔"%and 𝜔𝜔"& . The individual is assumed to know the distributions that generate the shocks and the 
shock realizations in the current period but not in future periods. The distributions are assumed to 
be constant over time, and the shocks are uncorrelated within and between periods. Once a future 
year is reached, and the shocks are realized, the individual can reoptimize by choosing the 
alternative with the maximum value at that time. But in the current period, the future realizations 
are not known, so the individual assesses the future period by taking the expected value of the 
maximum (i.e., the expected value of civilian conditional on it being superior to that of reserve 
times the probability of that occurring, plus the expected value of reserve conditional on it being 
superior to civilian times the probability of that occurring). For instance, depending on the 
shocks and the compensation, there is some chance that 𝑉𝑉!(𝑘𝑘") will be greater than 𝑉𝑉$(𝑘𝑘"), in 
which case 𝑉𝑉!(𝑘𝑘") would be the maximum (and vice versa), and the individual makes an 
assessment of the expected value of the maximum, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸@𝑉𝑉!(𝑘𝑘"), 𝑉𝑉$(𝑘𝑘")A.

The extreme value distribution, denoted EV, has location parameter a and scale parameter b; 
the mean is , and the variance is p2b2/6 where ϕ is Euler’s gamma (~0.577). As we derived 
in past studies (Asch et al., 2008; Mattock et al., 2016), this implies

𝜖𝜖"$'()' ~ 𝐸𝐸𝐸𝐸 D−𝜙𝜙G𝜆𝜆* + 𝜏𝜏*, G𝜆𝜆* + 𝜏𝜏*J

𝜔𝜔"%~𝐸𝐸𝐸𝐸[–𝜙𝜙𝜙𝜙, 𝜆𝜆]

𝜔𝜔"&~𝐸𝐸𝐸𝐸[–𝜙𝜙𝜙𝜙, 𝜆𝜆]

𝜖𝜖"$~𝐸𝐸𝐸𝐸[–𝜙𝜙𝜙𝜙, 𝜏𝜏]

7 See Train, 2009, for a discussion of the logit and nested logit specifications.
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where 𝜆𝜆 is the common scale parameter of the distributions of 𝜔𝜔"% and 𝜔𝜔"& , and 𝜏𝜏 is the scale 
parameter of the distribution of 𝜖𝜖"$. In the nested structure of the model, leavers face a common 
shock for the “leave” nest, 𝜖𝜖"$, as well as shocks for the reserve and civilian alternatives within 
the nest, 𝜔𝜔"% and 𝜔𝜔"& , which, all together, produce a leave shock distributed as extreme value type 
I, with location parameter

–𝜙𝜙√𝜆𝜆* + 𝜏𝜏* and scale parameter √𝜆𝜆* + 𝜏𝜏*. 

The logit model requires that the scale parameters of the leave and stay shocks be equal, so we 
parameterize the model such that the stay scale parameter, which we denote k, has the same
value as the leave scale parameter, 

𝑘𝑘 = √𝜆𝜆* + 𝜏𝜏* .

The values of the alternatives 𝑉𝑉#(𝑘𝑘"), 𝑉𝑉%(𝑘𝑘"), and 𝑉𝑉&(𝑘𝑘") depend on the current pay for
serving in an active component or working as a civilian, 𝑊𝑊#(𝑘𝑘") or 𝑊𝑊&(𝑘𝑘"). The service 
member’s active pay is based on total YOS, 𝑎𝑎𝑎𝑎", as well as their grade, 𝑔𝑔".

Our model includes promotion. The model assumes that the timing and probability of 
promotion at each grade is the same across all officers and is the same across all enlisted.
Variation in the timing and probability of promotion for an individual service member is 
captured by the shock term. Promotion to a given grade occurs at a given number of YOS, but 
the probability of promotion differs by grade. Also, the probability of promotion is assumed to 
be invariant to policy change. Not being promoted decreases the value of continuing in the 
military and operates to decrease retention. Officers or enlisted service members that are 
promoted can look ahead to future promotion gates, and their value of staying is higher than that 
of service members that are not promoted. 

The possibility of reoptimizing in future periods distinguishes dynamic programming models 
from other dynamic models. Reoptimization means that the individual can choose the best 
alternative in a period when its conditions have been realized (i.e., when the shocks are known). 
As mentioned, future realizations are unknown in the current period, and the best the individual 
can do is to estimate the expected value of the best choice in the next period (i.e., the expected 
value of the maximum). This will also be true in the following period, the one after it, and so 
forth—so the model is forward-looking and rationally handles future uncertainty. Thus, today’s
decision accounts for the possibility of future changes of state and assumes that future decisions 
will also be optimizing.

To be more specific, in developing a mathematical expression for the value of the value 
function 𝑉𝑉#(𝑘𝑘"), the DRM considers all possible future pathways, recognizing that each pathway 
depends on each probability of promotion to the next grade and the YOS when promotion can 
occur. Thus, the DRM views an officer or enlisted service member with a particular as 
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reasoning forward to identify the full set of possible future paths of staying or leaving. Then, the 
service member reasons backward starting from the final stay or leave decision year, called year 
T.

For each possible 𝑘𝑘+, the model assumes that the service member considers whether to stay 
or leave. From the perspective of an earlier year t, the member’s current year, there is no reason 
to commit to a decision at T, and, in fact, it would be short-sighted to do so because the member 
would not be able to base the decision on information that will be revealed when T arrives (i.e.,
when the shocks in T are realized). Instead, the service member at t develops a decision rule
about whether to stay or leave at T, and that rule is to stay if the value of doing so is higher than 
the value of leaving, otherwise to leave. The service member can—in the context of the model—
compute the expected value of making that optimal decision. Reasoning backward, this 
expression enters into the expression for the optimal stay-versus-leave decision at t – 1 and so on 
back, year by year, to t. 

At t, the value of continuing in the military for a member at grade g (now shown as a 
superscript) is

𝑉𝑉!(𝑘𝑘") = 𝑉𝑉#(𝑘𝑘") + 𝜖𝜖"# = 𝛾𝛾# +𝑊𝑊"
#, + 𝛽𝛽 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑉𝑉#(𝑘𝑘"-.) + 𝜖𝜖"-.# , 𝑉𝑉$(𝑘𝑘"-.) + 𝜖𝜖"-.$ ) + 𝜖𝜖"#,

where is the individual’s taste for active duty, W/
01 is active-duty pay, 𝛽𝛽 is the personal 

discount factor, the 𝜖𝜖 terms are random shocks, and the operator 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 finds the expected value 
of the maximum of the terms

𝑉𝑉#(𝑘𝑘"-.) + 𝜖𝜖"-.# and 𝑉𝑉$(𝑘𝑘"-.) + 𝜖𝜖"-.$ ). 

Each of these terms has a nonrandom term and a random term. 
Consider shocks that have an extreme value distribution with a mode of zero and a scale of 

kappa: 𝜖𝜖~𝐸𝐸𝐸𝐸[0, 𝜅𝜅]. With an extreme value shock, the quantity 𝑎𝑎 + 𝜀𝜀 is distributed as 𝐸𝐸𝐸𝐸[𝑎𝑎, 𝜅𝜅].
The mean of this distribution equals the scale factor times Euler’s gamma plus the mode: 𝜙𝜙𝜙𝜙 + 𝑎𝑎
where 𝜙𝜙 ≈ 0.577. If the mode is transformed by subtracting 𝜙𝜙𝜙𝜙, then 𝑎𝑎–𝜙𝜙𝜙𝜙 + 𝜀𝜀 is distributed as
𝐸𝐸𝐸𝐸[𝑎𝑎–𝜙𝜙𝜙𝜙, 𝜅𝜅] with a mean of a. (This transformation is equivalent to assuming that the shocks 
are distributed as 𝜀𝜀~𝐸𝐸𝐸𝐸[−𝜙𝜙𝜙𝜙, 𝜅𝜅]; that is, that the shocks have mean zero and scale kappa.) Also, 
if two quantities V2 and 𝑉𝑉3 have the form 𝑎𝑎 + 𝜀𝜀 and we subtract 𝜙𝜙𝜙𝜙 from each, their maximum 
has an extreme value distribution, namely, 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑉𝑉4, 𝑉𝑉3)~𝐸𝐸𝐸𝐸[𝜅𝜅ln(𝑒𝑒5
!
" + 𝑒𝑒5

#
") − 𝜙𝜙𝜙𝜙, 𝜅𝜅].

The mean of this distribution is 𝜅𝜅ln(𝑒𝑒5!/7 + 𝑒𝑒5#/7). The mean is the expected value of the 
maximum. This result implies that
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To introduce promotion, we replace with its expected value, where is the probability of 

promotion:

In those YOS where no promotion occurs (that is, in those YOS when promotion is not possible), 
the probability of promotion is zero. In years where promotion might occur (i.e., in those YOS 
when promotion is possible), the probability of promotion is assigned a value relevant for the 
grade. In general, not all eligible individuals get promoted, particularly in the senior grades; as a 
result, the probability of promotion is typically strictly less than one. Note that in this model, the 
probability of promotion for an individual is solely a function of their YOS and does not depend 
on TIG or the inventory of service members in a grade; in simulations using estimated model 
parameters, we relaxed this assumption and allowed the timing of an individual’s promotion to 
vary based on their (unobserved) ability or effort.

For simplicity, we assume that civilian pay only depends on YOS (or years since initial 
active enlistment or accession, if the individual has left active service). If the member is a 
reservist, he earns the civilian wage plus reserve pay, 𝑊𝑊&(𝑘𝑘") + 𝑊𝑊%(𝑘𝑘"). As with active pay, 
reserve pay depends on total years, including prior active years and reserve years.

The tastes for active and reserve duty, 𝛾𝛾# and 𝛾𝛾%, represent the individual’s perceived net 
advantage of holding an active or reserve position, relative to the civilian state. Other things 
equal, more taste for active or reserve service increases retention. The tastes are assumed to be 
constant over time but vary across individuals. Also, tastes for active and reserve service are not 
observed but are assumed to follow a bivariate normal distribution among active component 
entrants.

The non-stochastic (in the current period) values of the reserve choice and civilian choice can 
be written as

,

Where 𝑅𝑅(𝑘𝑘") in the civilian equation is the value of any active or reserve military retirement 
benefit for which the individual is eligible. NDAA 2016 created a new military retirement 
system, known as the BRS. Because our data cover retention decisions of personnel under the 
legacy retirement system, we use the formula for the legacy system for the purpose of our 
analysis given by

.

.
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𝑅𝑅(𝑘𝑘") = 2.5%	 × 	𝑎𝑎𝑦𝑦" 	× 	𝑊𝑊#(𝑘𝑘") 

for the active retirement system where, in this formula, 𝑊𝑊#(𝑘𝑘") is the highest three years of 
basic pay and is computed based on total active years,	ay/. For a member with 30 YOS, the 
multiplier 2.5%	 × 	𝑎𝑎𝑦𝑦" is 75 percent, while it is 100 percent for a member with 40 YOS. (After 
2007, the 75 percent cap on the multiplier was lifted, thereby permitting additional YOS beyond 
30 to contribute to retired pay.) 

The model has two switching costs, which enter the relevant value function as additive terms. 
Switching cost refers to a latent cost reflecting the presence of constraints or barriers affecting 
the movement from particular states and periods to other states, relative to the movement that 
would otherwise have been expected from the expressions shown previously for the values of 
staying and of leaving. Switching costs are not actually paid by the individual but, as estimated 
in the model, are a monetary representation of the constraints or barriers affecting the transition 
from one state to another at a given time. Furthermore, a switching cost can be either negative or 
positive. A negative value implies a loss to the individual when changing from the current status 
to an alternative status, while a positive value implies a gain or incentive for the change. The first 
switching cost is a cost of leaving the active component before an officer or an enlisted service 
member’s ADSO is completed, or an enlisted service member’s initial term of service is 
completed. This switching cost enters the value functions 𝑉𝑉%(𝑘𝑘") and 𝑉𝑉&(𝑘𝑘"). The estimates, 
shown later, indicate that the switching cost has a negative value for all services, possibly 
reflecting the perceived cost of breaching the service contract. The second switching cost is a 
cost of switching into the reserve from the civilian state and enters the value function 𝑉𝑉%(𝑘𝑘"). 
This cost could represent difficulty in finding a reserve position in a desired geographic location 
or an adverse impact on one’s civilian job, e.g., from not being available to work on certain 
weekends or for two weeks in the summer or being subject to reserve call-up. This impact is 
negative across all services. 

Estimation Methodology 

To estimate the DRM, we use the mathematical structure of the model together with 
assumptions on the distribution of tastes across service members and shock distributions. This 
allows us to derive expressions for the transition probabilities, given one’s state, which are then 
used to compose an expression for the likelihood of each individual’s years of active retention 
and reserve participation. Importantly, each transition probability is itself a function of the 
underlying parameters of the DRM. These are the parameters of the taste distribution, the shock 
distributions, the switching costs, and the discount factor. The estimation routine finds parameter 
values that maximize the likelihood. 

The transition probability is the probability in a given period of choosing a particular 
alternative (i.e., active, reserve or civilian), given one’s state. Because we assume that the model 
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is first-order Markov,8 that the shocks have extreme value distributions, and that the shocks are 
uncorrelated from year to year, we can derive closed-form expressions for each transition 
probability. For example, as Train (2009) shows, the probability of choosing to stay active at 
time t, given that the service member is already in the active component, is given by the logistic 
form

Pr(𝑉𝑉! > 𝑉𝑉$) =
𝑒𝑒
5$
7

𝑒𝑒
5$
7 + a𝑒𝑒

5%
8 + 𝑒𝑒

5&
8 b

8
7
.

We omit the state vector in each expression for clarity. We can also obtain expressions for the 

probability of leaving the active component and, having left, the probabilities of entering (or 
staying in) the reserve component in each subsequent year.

The transition probabilities in different periods are independent and can be multiplied 
together to obtain the probability of any given individual’s career profile of active, reserve, and 
civilian states that we observe in the data. Multiplying the career profile probabilities together 
gives an expression for the sample likelihood that we use to estimate the model parameters for 
using maximum likelihood methods.9 Optimization is done using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, a standard hill-climbing method. We compute standard 
errors of the estimates by using numerical differentiation of the likelihood function and taking 
the square root of the absolute value of the diagonal of the inverse of the Hessian matrix. To 
judge goodness of fit, we use parameter estimates to simulate retention profiles for synthetic 
individuals (characterized by tastes drawn from the taste distribution) who are subject to shocks 
(drawn from the shock distributions), then aggregate the individual profiles to obtain a force-
level retention curve and compare it with the retention curve computed from actual data.

We estimate the following model parameters:

• the mean and standard deviation (SD) of tastes for active and reserve service relative to 
civilian opportunities, as well as their correlation (e.g., 𝜇𝜇(, 𝜇𝜇9, 𝜎𝜎(, 𝜎𝜎9, and 𝜌𝜌) 

• a common scale parameter of the distributions of 𝜔𝜔"% and 𝜔𝜔"& , λ, and a scale parameter of 
the distribution of 𝜖𝜖"$, or τ.

• a switching cost incurred if the individual leaves active duty before completing the 
ADSO or first term

• a switching cost incurred if the individual moves from civilian to reserve

8 A first-order Markov assumption is that the probability of an event at time 𝑡𝑡 + 1 only depends on the state at time 
𝑡𝑡.
9 This approach bears some resemblance to a (highly restricted) mixed logit model. 
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In past DRM analyses, we also estimated a personal discount factor (see Asch, Hosek, and 
Mattock, 2014). We fixed the personal discount factor in this study because we found the model 
fits were better and parameter estimates were more reasonable relative to our expectations using 
past research.10 The personal discount factor might not have been identified as strongly as in our 
prior models because this study made military compensation a function of probabilistic 
promotion as opposed to an assumed wage trajectory.11 We set the personal discount factor for 
officers equal to 0.94 and for enlisted to 0.88, which are the values we have typically estimated 
for officers and enlisted in earlier work (e.g., Asch, Hosek, and Mattock, 2014; Mattock, Hosek, 
and Asch, 2012). 

Once we have parameter estimates for a well-fitting model, we can use the logic of the model 
and the estimated parameters to simulate the active component cumulative probability of 
retention to each YOS in the steady state for a given policy environment, such as a change to the 
retired pay cap. By steady state, we mean when all members have spent their entire careers under 
the policy environment being considered. The simulation output includes a graph of the active 
component retention profile for officers and enlisted personnel by YOS. We can also produce 
graphs of reserve component participation and provide computations of costs, although we do 
not do so here. We show model fit by simulating the steady-state retention profile in the current 
policy environment and comparing it with the retention profile observed in the data. 

Data 

DMDC’s WEX data contain person-specific longitudinal records of active and reserve 
service. WEX data began with service members in the active or reserve component on or after 
September 30, 1990. Our analysis files include active component entrants in 1990 and 1991, who 
are followed through 2016, providing up to 26 years of data for the 1990 cohort and up to 25 
years of data for the 1991 cohort. In constructing the officer samples, we exclude medical 
personnel and members of the legal and chaplain corps because their career patterns differ 
markedly from those of the rest of the officer corps, suggesting that analysis of retention for 
these personnel needs to be conducted separately. We also excluded officers with prior enlisted 
service. 

Another key source of data is information on civilian and military pay. For civilian pay 
opportunities for enlisted personnel, we used the 2007 median wage for full-time male workers 

 
10 The personal discount factor equals 1/(1+r) where r is the personal discount rate. For example, a personal 
discount factor of 0.88 corresponds to a discount rate r of 13.6 percent. 
11 Our inability to estimate a personal discount rate in this study could be because we examined different study 
period than previous studies or because we introduced promotion into the model. We were unable to explore why 
introducing promotion would affect identification of the discount rate, but future research should do so. 
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with associate’s degrees.12 For officers, we use the 2007 80th percentile of basic pay for full-time 
male workers with a master’s degree in management occupations for civilian pay. The data are 
from the Census Bureau. Civilian work experience is defined as the sum of active years, reserve 
years, and civilian years since age 22, but here, pay does not vary by other factors, such as years 
since leaving active duty. We used 2007 military pay tables. Military pay increases are typically 
across the board; the structure of pay by grade and YOS remain the same.13 Therefore, we did 
not expect our results to be sensitive to the choice of year. Annual military pay for active 
members is represented by regular military compensation (RMC) for fiscal year 2007, equal to 
the sum of basic pay, basic allowance for subsistence, basic allowance for housing, and the 
federal tax saved because the allowances are not taxed. Data on RMC and basic pay by grade and 
YOS were from the Selected Military Compensation Tables, also known as the Green Book 
(Office of the Under Secretary of Defense for Personnel and Readiness, Directorate of 
Compensation, 1980–2017). Reserve component members are paid differently from active 
component members, although the same pay tables are used. The method for computing reserve 
component annual pay is described in Asch, Mattock, and Hosek (2017). Military retirement 
benefits are related to the basic pay table, and we used the basic pay tables for 2007 for this 
computation.  

We also required data on enlisted and officer promotion rates and promotion timing to each 
grade. Officer promotion rates were drawn from those used in Asch and Warner (1994a), while 
promotion rates for enlisted and promotion timing data for both officers and enlisted were based 
on computations of average time in service at promotion by grade and service for fiscal year 
1993 to 2008 from DMDC. We chose these years because we sought promotion times that would 
be relevant to the 1990–1991 accession. In doing so, we assumed a static promotion schedule, 
and the individual expectations of the probability of promotion matched the realized probabilities 
of promotions (i.e., rational expectations). The advantage of this approach it that it is 
straightforward to implement and does not impose much computational burden. An alternative 
approach would have been to use the realized probabilities of promotion for each year observed. 
However, this would have required constructing a model whereby individuals would have priors 
over their probability of promotion and that would allow for individuals to update their estimated 
probability of promotion over time. This approach is desirable in that it would have higher 
fidelity to the observed changes in promotion probabilities but potentially imposes a significant 

 
12 Alternatively, we could have used time-dependent pay trajectories instead of using a single representative year. 
Using a single year has the advantage of reducing the computational complexity of the overall model and, with it, 
the run time associated with estimation. However, this approach is not without its weaknesses. For example, the 
continuous real decline in less-than-bachelor’s degree salaries since 1900 could provide an increasing retention 
effect that would be missed by using a static wage value. 
13 An exception was the structural adjustment to the basic pay table in fiscal year 2000 that gave larger increases to 
midcareer personnel who had reached their pay grades relatively quickly (after fewer YOS). A second exception was 
the expansion of basic allowance for housing, which increased in real value from fiscal year 2000 to fiscal year 
2005. 



  30 

computational burden. Another, less computationally burdensome approach would be to have a 
dynamic promotion schedule and give members perfect foresight (i.e., rational expectations); this 
approach might hold the most promise for future research.  

In the next chapter, we present the model estimates and model fits for the 13th QRMC DRM 
and discuss the technical details of the simulation capability. 

Simplifying Assumptions and Efficient Computing 
We made several simplifying assumptions in an effort to make the model practical to 

estimate. In addition, we took steps to compute the stochastic dynamic program in the most 
efficient manner. 

Among the simplifying assumptions in this model is a simplified model of promotion, where 
the probability weight is placed on 1 YOS. That is, there is a single year in which an individual 
has a hazard of being promoted. A more realistic model of officers would, for example, include 
promotion below the zone, in the zone, and above the zone. As it is, the model we described 
previously models only in the zone promotion for estimation. 

We use a single pay table for estimating the model, the 2007 pay table. Therefore, we would 
miss any phenomena related to structural differences from the 2007 pay table (we have relaxed 
this in some of our work related to Air Force pilot retention). 

Individual tastes are assumed to be constant. A more realistic model might account for job 
characteristics and allow taste to vary over a career. For example, Air Force pilots might be 
modeled as having a taste for flying, and thus their taste in a given YOS would be a function of 
their flying hours. 

Similarly, in this model the taste distribution is held constant within the individual 
populations for which we estimate the model. Alternatively, we could model both the mean and 
SDs of the taste distribution as being functions of, for example, demographic characteristics that 
might vary over a population. 

We do not allow for serial correlation in this model. All environmental shocks are assumed to 
be independently and identically distributed. 

We also have a linear functional form for utility. Thus, we are implicitly assuming risk 
neutrality on the part of the individual. Alternatively, we could use nonlinear utility functions, 
such as the constant absolute risk aversion or constant relative risk aversion, but only at 
considerably more computational complexity. 

We assume that every individual in a population has the same discount rate. Alternatively, 
we could assume that an individual’s discount rate is drawn from some distribution. Similarly, 
we assume that an individual’s discount rate does not change as they age. 

We do not model an individual’s savings decisions. This is relevant to modeling the choice of 
the level an individual contributes to a Thrift Savings Plan or to other retirement-related 
decisions. 
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These simplifications were made to make the model computable. As software and computing 
hardware improve over time, we anticipate relaxing some of these assumptions. 

Computing the Stochastic Dynamic Program Efficiently 

To make computation more efficient, the RAND model makes extensive use of caching (that 
is, storing the results of functions that are expensive to evaluate) to avoid repeatedly solving 
identical subproblems. The identical subproblems are an artifact of using recursion to compute 
the dynamic program; such programs can often end up needing to solve identical subproblems 
that appear at different points of the branching tree of possibilities. So, for efficiency, we cache 
all functions that are computationally expensive to evaluate.   

In addition, we exploit the fact that any one iteration of the likelihood function consists of 
many subproblems that can be computed in parallel. That is, for a given value of the parameters 
and each point in the taste distribution, each individual’s stochastic dynamic program 
corresponding to their career history can be solved in parallel. In practice, however, there 
appears to be little benefit to expanding beyond the eight to 12 processors on existing computing 
architectures. This is a case where a quantum computer could help. With a quantum computer of 
sufficient capacity, we could fully exploit the parallelism of our problem. 

Finally, we use Halton sequences that generate antithetic pairs (pairs symmetric around a 
mean) when choosing support points for the taste distribution, which aids in efficiently averaging 
over the population of interest (i.e., integrating out heterogeneity) when calculating probabilities. 
To put this in more concrete terms, we use a Halton sequence to generate two uncorrelated 
standard normal distributions and use the current value of the mean and SD parameters for active 
component and reserve component tastes, as well as the taste correlation, to generate a bivariate 
normal distribution with the desired properties. The way we do this is documented in Asch et al. 
(2008). Briefly, following Train (2009), we take two independent draws from a standard normal 
distribution and use a Cholesky decomposition to transform them into random variables that are 
jointly normally distributed. This results in a set of sample points from a bivariate normal 
distribution that smoothly varies with the changing values for the mean, SD, and correlation 
parameters during successive evaluations of the likelihood function while trying to find the 
parameter values that maximize the likelihood. 

Optimization Algorithms 

Typically, researchers use a hill-climbing algorithm to find the values of the parameters of a 
maximum likelihood model.14 Sophisticated hill-climbing algorithms, such as BFGS, generally 
perform well in estimating the DRM. However, there are some variants of the DRM in which 
hill-climbing algorithms do not perform well, such as when there are thresholds governing 

 
14 This discussion of optimization algorithms draws from Mattock and Arkes (2007). 
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member behavior. However, we have found some approaches to this problem that worked well, 
as we describe in the following paragraphs. Readers who are not interested in these details might 
want to skip the remainder of this subsection and continue with the next. 

Numerical integration routines sample functions over a finite number of points and estimate 
the value of the integral using this sample. If the interval of interest is small, as can sometimes be 
the case with the DRM, then the numerical integration routine might miss the interval. This 
means that small parameter changes might result in large changes in the calculated number for 
the log likelihood. These large changes are because of the sample points of the numerical 
integration routine hitting or missing the possibly small interval. These large changes spell 
trouble for any hill-climbing algorithm that relies on numerical estimates of the gradient of the 
likelihood function. Even hill-climbing algorithms that do not rely on estimating the gradient, 
such as the Nelder-Mead multidimensional simplex algorithm, can run into trouble, becoming 
trapped in a local maximum. 

This problem can be addressed in two ways. One is to attempt to increase the precision of the 
numerical integration routine. This is not always an effective strategy for the DRM because 
simply increasing the number of sample points does not obviate the interaction of the numerical 
integration routine with any thresholds that might govern member behavior in this model. The 
second way to address this problem is to use a search algorithm that is well suited to problems in 
which there are many local maxima. Simulated annealing (also known as the Metropolis-
Hastings algorithm) is one such approach. The simulated annealing algorithm randomly jumps to 
a point and compares the value of the objective function at the new point with the old best value. 
With some probability (governed by a Boltzman distribution, for example), it accepts the new 
point, even if the new point has a lower value for the objective function than the current best 
point; in this way it avoids getting stuck at a local maximum. As the algorithm progresses, it 
chooses random points closer and closer to the current best point; it does this according to a 
“cooling schedule” governed by an optimizer parameter called “temperature.” This algorithm 
bears some resemblance to models of materials undergoing an annealing process, hence the name 
simulated annealing. 

When the simulated-annealing algorithm finds a maxima of the likelihood function, a hill-
climbing algorithm (either Nelder-Mead [also known as the downhill simplex method, which is a 
derivative-free method] or BFGS [which uses numerical estimates of the gradient]) can be used 
to further refine the parameter estimates. 

Another approach is to use an expectation-maximization (EM) algorithm. This approach 
avoids the problems caused by the approximate nature of numerical integration noted previously. 
The EM algorithm consists of two steps (Dempster, Laird, and Rubin, 1977). In the first step, a 
likelihood function that depends on the unobservable data (in this case, the individual values of 
gamma) and assumed values for the rest of the parameters is used to estimate the unobservable 
data. The second step consists of using the estimated values of the unobservable data in a 
likelihood function for the complete data model, which is then used to generate estimates of the 
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model parameters. The model parameters generated in the second step are then used as the 
assumed values in the first step, and the two steps are repeated until the algorithm converges on a 
set of parameter values. 

More formally, we can write the likelihood function for each individual so that it depends on 
the value of gamma, the individual data 𝑥𝑥:, and the model parameters 𝜃𝜃 = (𝛼𝛼, 𝛿𝛿, 𝜎𝜎, 𝛽𝛽). For 
example, if an officer stays for s periods and then leaves, the likelihood would be 

𝐿𝐿:(𝛾𝛾:|	𝑥𝑥: , 𝜃𝜃) = 	mPr	[𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆;

"-<

;="

|	𝛾𝛾: , 𝑥𝑥: , 𝜃𝜃] Pr[𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿"-<-.| 	𝛾𝛾: , 𝑥𝑥: , 𝜃𝜃]𝑔𝑔(𝛾𝛾|𝜃𝜃). 

Step 1. Find the value of 𝛾𝛾: 	that maximizes the individual likelihood, assuming that the 
parameter vector is 𝜃𝜃p>: 

𝛾𝛾%'( = 	
𝑎𝑎𝑎𝑎𝑎𝑎	𝑚𝑚𝑚𝑚𝑚𝑚

𝛾𝛾'
𝐿𝐿'(𝛾𝛾'	|	𝑥𝑥', 𝜃𝜃2)). 

Step 2. Find the value of  that maximizes the individual likelihood given the values for the 
individual gammas estimated in step 1 and the data: 

𝜃𝜃2( = 	
𝑎𝑎𝑎𝑎𝑎𝑎	𝑚𝑚𝑚𝑚𝑚𝑚

𝜃𝜃 	𝐿𝐿(𝛾𝛾%(|𝑥𝑥, 𝜃𝜃2(). 

Then iterate over the two steps, substituting the  estimate of 𝜃𝜃 into the (𝑛𝑛 + 1)th iteration 
of step 1 to estimate  

𝛾𝛾r:?-. =	 (9,	4(AB*
𝐿𝐿:(𝛾𝛾: 	|	𝑥𝑥: , 𝜃𝜃p?)  

and then use the new estimates of 𝛾𝛾: to generate new estimates of  

𝜃𝜃p?-. =	 (9,	4(AC 	𝐿𝐿(𝛾𝛾r?-.|𝑥𝑥, 𝜃𝜃p?)   

until the algorithm converges on a value of 𝜃𝜃p. 
This algorithm generally converges to the maximum likelihood solution. However, 

convergence is not guaranteed. 
This algorithm has been generalized to the case where in each step values of the 

unobservable data and the parameters of the full data model are chosen that merely improve the 
likelihood function (Neal and Hinton, 1998). If each step assures some improvement, then the 
algorithm can be shown to have similar convergence properties to an algorithm using the optimal 
values of the unobserved data and the model parameters. This is the Generalized Expectation 
Maximization (GEM) algorithm. 

q

thn
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The GEM algorithm is very useful for estimating models with unobserved individual 
heterogeneity. As can be seen from the aforementioned description, the algorithm avoids the 
need to integrate out heterogeneity. This leads to a significant reduction in the computer time 
needed to estimate models with unobserved individual heterogeneity and facilitates exploration 
of additional sources of heterogeneity (e.g., in the individual discount rate for future earnings). 

Finally, we can also use a grid search to help narrow down parameter values of interest. 
However, selecting the appropriate ranges and intervals within each range so that the number of 
sample points is computationally feasible can be challenging. A grid search can be used to help 
find starting values for some of the optimization algorithms already mentioned, or the values 
computed for the grid can be used to construct an interpolating function that is easier to compute 
than the likelihood function itself. In this case, the interpolating function is used with another 
optimization algorithm to find parameter estimates. 

In general, we find that using Nelder-Mead to get initial DRM parameter estimates and then 
refining the parameter estimates using the BFGS algorithm works well. For those DRMs where 
the Nelder-Mead/BFGS combination performs poorly, we can use alternative methods such as 
grid search, simulated annealing, and the EM or GEM algorithms. 
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Chapter 4. Model Estimates and Fit and Simulation 

This chapter presents the model estimates and illustrates how the model predictions fit the 
observed data, a measure of goodness of fit.15 We then illustrate the technical details of the 
simulation capability, focusing on the TIG pay table reform. In this application, the simulation 
capability required that we extend the capability to include metrics of performance. We discuss 
these extensions. 

Model Estimates 
Tables 4.1 and 4.2 show the estimated parameters and standard errors for the retention model 

of officers. To make the numerical optimization easier, we did not estimate most of the 
parameters directly but instead estimated the logarithm of the absolute value of each parameter, 
except for the taste correlation, for which we estimated the inverse hyperbolic tangent of the 
parameter.16 All of the parameters are statistically significant in the Navy and Air Force models, 
and all but the between-nest scale parameter 𝜏𝜏	are significant in the Army and Marine Corps 
models. To recover the parameter estimates, we transformed the estimates. Table 4.3 shows the 
transformed parameter estimates for each service. The estimates are denominated in thousands of 
2007 dollars, except for the assumed discount rate and the taste correlation. 
  

 
15 In this example, we assess goodness-of-fit by comparing predicted retention with observed retention. However, 
we discuss and present other approaches to testing external validity of the DRM capability in other examples; 
specifically, our analysis of retention of Chicago public school teachers (Knapp et al., 2018) and the retention of 
state public school teachers in South Carolina, Tennessee, and Pennsylvania (Asch, Knapp, and Mattock, 2022). 
16 Using the logarithm helps to keep all the parameters on roughly the same scale, which can be an important 
consideration with numerical optimization algorithms. In addition, using logarithms means that an optimization 
approach that relies on numerical derivatives, such as BFGS, uses deltas that are the same proportion across all 
parameters, which can help to speed convergence. 
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Table 4.1. Parameter Estimates and Standard Errors: Army and Navy Officers 

 Army Navy 

Parameter Estimate 
Standard 

Error Estimate 
Standard 

Error 
Log(Scale Parameter, Nest = 𝜏𝜏) –1.36 33.83 5.20 0.04 
Log(Scale Parameter, Alternatives within Nest = 𝜆𝜆) 4.69 0.03 3.40 0.06 
Log(–1*Mean Active Taste = 𝜇𝜇!) 3.19 0.04 3.00 0.05 
Log(–1*Mean Reserve Taste = 𝜇𝜇") 5.63 0.05 4.01 0.05 
Log(SD Active Taste =	𝜎𝜎!) 3.76 0.04 3.87 0.05 
Log(SD Reserve Taste =	𝜎𝜎") 5.26 0.05 3.88 0.06 
Atanh(Taste Correlation	= ρ) 0.67 0.02 0.94 0.01 
Log(–1*Switch Cost: Leave Active < ADSO) 4.81 0.03 5.20 0.04 
Log(–1*Switch Cost: Switch from Civilian to Reserve) 6.05 0.03 4.90 0.05 
Personal Discount Factor 𝛽𝛽 (Assumed) 0.94 N/A 0.94 N/A 
–1*Log Likelihood 24,141  32,139  
N 5,318  6,445  
SOURCE: Author calculations using DMDC WEX data on cohorts of personnel entering active duty as officers in 1990–
1991.  
NOTE: N/A = not applicable. The scale parameter 𝜅𝜅 governs the shocks to the value functions for staying and for the 
reserve-versus-civilian nest and equals √𝜆𝜆# + 𝜏𝜏#. The means and SDs of tastes for active and reserve service relative 
to civilian opportunities are estimated, as are the costs associated with leaving active duty before completing ADSO 
and switching from civilian status to participating in the reserves. The personal discount factor was assumed to be 0.94 
in these models. 

Table 4.2. Parameter Estimates and Standard Errors: Air Force and Marine Officers 

Parameter 

Air Force Marine Corps 

Estimate 
Standard 

Error Estimate 
Standard 

Error 
Log(Scale Parameter, Nest = 𝜏𝜏) 4.79 0.09 1.02 3.49 
Log(Scale Parameter, Alternatives within Nest = 𝜆𝜆) 3.96 0.35 4.37 0.05 
Log(–1*Mean Active Taste = 𝜇𝜇!) 2.92 0.07 2.65 0.07 
Log(–1*Mean Reserve Taste =	𝜇𝜇") 6.20 0.53 4.93 0.08 
Log(SD Active Taste = 𝜎𝜎!) 3.24 0.09 3.16 0.07 
Log(SD Reserve Taste = 𝜎𝜎") 5.78 0.55 4.51 0.08 
Atanh(Taste Correlation	= ρ) 0.45 0.01 0.56 0.04 
Log(–1*Switch Cost: Leave Active < ADSO) 4.73 0.06 4.89 0.05 
Log(–1*Switch Cost: Switch from Civilian to Reserve) 5.52 0.34 5.63 0.05 
Personal Discount Factor 𝛽𝛽 (Assumed) 0.94 N/A 0.94 N/A 
–1*Log Likelihood 8,871  9,086  
N 2,339  1,757  
SOURCE: Author calculations using DMDC WEX data on cohorts of personnel entering active duty as 
officers in 1990–1991. 
NOTE: The scale parameter 𝜅𝜅 governs the shocks to the value functions for staying and for the reserve-
versus-civilian nest and equals √𝜆𝜆# + 𝜏𝜏#. The means and SDs of tastes for active and reserve service 
relative to civilian opportunities are estimated, as are the costs associated with leaving active duty before 
completing ADSO and switching from civilian status to participating in the reserves. The personal discount 
factor was assumed to be 0.94 in these models. 
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Table 4.3. Transformed Parameter Estimates: Officers 

Parameter Army Navy Air Force Marine Corps 
Scale Parameter, Nest = 𝜏𝜏 0.26 181.83 120.73 2.78 
Scale Parameter, Alternatives within Nest = 𝜆𝜆 109.15 29.96 52.67 78.68 
Mean Active Taste = 𝜇𝜇! –24.30 –20.06 -18.51 –14.14 
Mean Reserve Taste = 𝜇𝜇" –279.98 –55.37 –490.71 –138.94 
SD Active Taste = 𝜎𝜎! 42.89 47.77 25.50 23.53 
SD Reserve Taste = 𝜎𝜎" 191.57 48.66 324.13 90.75 
Taste Correlation = 𝜌𝜌 0.58 0.74 0.42 0.51 
Switch Cost: Leave Active < ADSO –122.34 –180.42 –113.49 –133.39 
Switch Cost: Switch from Civilian to Reserve –425.02 –133.41 –248.92 –277.81 
Personal Discount Factor 𝛽𝛽 (Assumed) 0.94 0.94 0.94 0.94 
NOTE: Transformed parameters are denominated in thousands of 2007 dollars, with the exception of the 
taste correlation and personal discount factor. Definitions of variables are provided in the note for Table 2.1. 

 
We found that mean active taste is negative for the Army and equal to –$24,300. A negative 

value is consistent with past studies estimating the mean active taste among military officers and 
suggests that the military must offer relatively high pay to compensate for the requirements of 
service on active duty relative to not being in the military. For the Navy, the point of estimate of 
mean active taste is negative but smaller in absolute value than for the Army, equal to –$20,060. 
The mean active taste is also smaller in absolute value for both the Air Force and Marine Corps, 
at –$18,510 and –$14,140 respectively. All estimates of mean active taste are statistically 
different from zero. 

Mean taste for reserve duty is negative: –$279,980 for Army officers, –$55,370 for Navy 
officers, –$490,710 for Air Force officers, and –$138,940 for Marine Corps officers. As for the 
variance in tastes, we found that the SD of active-duty taste is larger for the Army and the Navy, 
at $42,890 for Army officers and $47,770 for Navy officers, while the SD of active-duty taste is 
smaller for Air Force and Marine Corps officers, at $25,500 and $23,530, respectively. The SD 
of reserve taste is largest for the Air Force at $324,130, followed by the Army at $191,570, the 
Marine Corps at $90,750, and the Navy at $48,660. 

The estimated scale parameter for the between-nest shock in the Navy model is much larger 
than the means and SDs of tastes, while the within-nest shock is of the same order of magnitude. 
These scale parameters provide information on the SD of the common random shock for the 
reserve or civilian nest, as well as the within civilian or reserve nest shocks. The model nests the 
reserve and civilian alternatives because most reservists also hold a civilian job; hence, a shock 
to civilian is also likely to be felt by reserve. The scale parameter for the active and reserve-
civilian shock is √𝜆𝜆* + 𝜏𝜏*, while the within-civilian or reserve nest shock is 𝜆𝜆. We estimate	𝜆𝜆 to 
be $29,960 and 𝜏𝜏 to be $181,830 for the Navy. These estimates imply that the scale parameter for 
the total shock 𝜅𝜅 is $184,278. The relative magnitudes of the scale parameters suggest that 
movement between the active nest and the reserve or civilian nest is largely driven by random 
shocks rather than by diverse tastes among Navy members (i.e., taste heterogeneity), while the 
movement between civilian and reserve statuses is equally driven by diverse tastes and random 
shocks. 
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For the Air Force, we found that the between-nest shock 𝜏𝜏 is larger than the mean and SD of 
active taste, but smaller in absolute value than the mean and SD of reserve taste. We estimated a 
𝜏𝜏 of $120,730, about six times the absolute value of the active mean taste of –$18,510 and about 
five times the SD of the active taste of $25,500. However, the estimated value of 𝜏𝜏 is about one-
fourth of the absolute value of the reserve mean taste at –$490,710 and about one-third of the SD 
of reserve taste, $324,130. The within-nest shock 𝜆𝜆 is estimated to be $52,670, which, like the 
estimate for 𝜏𝜏, places it between the absolute values of the estimates for the mean and SD of 
active taste and the mean and SD of reserve taste. The relative sizes of these parameters suggest 
that movement between the active nest and the reserve-civilian nest are driven by a combination 
of both service members’ individual tastes and random shocks. 

For the Army, we found that 𝜏𝜏 is small and not statistically significant from zero, so that the 
scale parameter for the active and reserve-civilian shock is essentially reduced to 𝜆𝜆. The 
interpretation of 𝜏𝜏 being close to zero is that the reserve-civilian shocks are uncorrelated, which 
might be the case when the year-to-year shocks experienced by civilians who participate in the 
reserve component are markedly different from pure civilians, such as when members of the 
reserve component are called on to support members of the active component. We estimated a 𝜆𝜆 
of $109,150, approximately four times the estimated mean active taste, –$24,300, and about half 
the value of the (absolute value of the) estimated mean reserve taste, –$191,570, implying that 
tastes and shocks play roles in explaining shifts into and out of active, reserve, and civilian 
statuses for the Army. 

Similarly, for the Marine Corps, we found that 𝜏𝜏 is small and not statistically significant from 
zero. As a result, the scale parameter for the active and reserve-civilian shock is essentially 
reduced to 𝜆𝜆. The estimated value of 𝜆𝜆 is $78,680, significantly larger than the mean and SD of 
active taste at –$14,140 and $23,530 respectively, and smaller than the mean and SD of reserve 
taste at –$138,940 and $90,750 respectively. 

The switching costs for leaving active duty early, before completing ADSO, are –$122,340 
for Army officers, –$180,420 for Navy officers, –$113,490 for Air Force officers, and –$133,390 
for Marine Corps officers. The cost of switching to a reserve component after being a civilian is 
–$425,020 for Army officers, –$248,920 for Navy officers, –$113,490 for Air Force officers, and 
–$277,810 for Marine Corps officers. These high costs might reflect the difficulty of finding an 
available reserve position or an implicit cost to one’s civilian career and lifestyle.  

Model Estimates for Enlisted Personnel 

Tables 4.4 and 4.5 show the estimated parameters and standard errors for the enlisted DRM 
for the Army, Navy, Air Force, and Marine Corps, respectively. As with the officer models, to 
make the numerical optimization easier, we did not estimate most of the parameters directly but 
instead estimated the logarithm of the absolute value of each parameter, except for the taste 
correlation, for which we estimated the inverse hyperbolic tangent of the parameter. All but the 
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between-nest scale parameters 𝜏𝜏 are statistically significant in the models. To recover the 
parameter estimates, we transformed the estimates. Table 4.6 shows the transformed parameter 
estimates for each service. The estimates are denominated in thousands of 2007 dollars, except 
for the assumed discount rate and the taste correlation. 

Table 4.4. Parameter Estimates and Standard Errors: Army and Navy Enlisted 

Parameter 

Army Navy 

Estimate 
Standard 

Error Estimate 
Standard 

Error 
Log(Scale Parameter, Nest = 𝜏𝜏) –1.18 16.62 0.73 2.27 
Log(Scale Parameter, Alternatives within Nest = 𝜆𝜆) 3.25 0.04 2.99 0.05 
Log(–1*Mean Active Taste = 𝜇𝜇!) 2.78 0.03 2.96 0.03 
Log(–1*Mean Reserve Taste = 𝜇𝜇") 3.93 0.05 4.59 0.07 
Log(SD Active Taste = 𝜎𝜎!) 1.79 0.11 2.06 0.09 
Log(SD Reserve Taste = 𝜎𝜎") 3.45 0.05 4.04 0.08 
Atanh(Taste Correlation	= ρ) 0.68 0.03 0.70 0.05 
Log(–1*Switch Cost: Leave Active < ADSO) 3.00 0.06 2.87 0.06 
Log(–1*Switch Cost: Switch from Civilian to Reserve) 4.71 0.04 4.39 0.05 
Personal Discount Factor 𝛽𝛽 (Assumed) 0.88 N/A 0.88 N/A 
–1*Log Likelihood 24,656  15,691  
N 5,540  4,863  
SOURCE: Parameter estimates from cohorts of enlisted personnel entering active duty in 1990–1991.  
NOTE: The scale parameter 𝜅𝜅 governs the shocks to the value functions for staying and for the reserve versus-
civilian nest and equals √𝜆𝜆# + 𝜏𝜏#. The means and SDs of tastes for active and reserve service relative to civilian 
opportunities are estimated, as are the costs associated with leaving active duty before completing ADSO and 
switching from civilian status to participating in the reserves. The personal discount factor was assumed to be 
0.88 in these models. Army and Navy models were estimated using a 5-percent random sample of the data. 

Table 4.5. Parameter Estimates and Standard Errors: Air Force and Marine Enlisted 

Parameter 

Air Force Marine Corps 

Estimate 
Standard 

Error Estimate 
Standard 

Error 
Log(Scale Parameter, Nest = 𝜏𝜏) 1.09 1.38 –3.27 177.29 
Log(Scale Parameter, Alternatives within Nest = 𝜆𝜆) 3.25 0.05 3.01 0.05 
Log(–1*Mean Active Taste = 𝜇𝜇!) 2.67 0.03 3.79 0.04 
Log(–1*Mean Reserve Taste = 𝜇𝜇") 5.16 0.15 7.34 0.25 
Log(SD Active Taste = 𝜎𝜎!) 2.13 0.09 3.28 0.06 
Log(SD Reserve Taste = 𝜎𝜎") 4.75 0.15 6.94 0.26 
Atanh(Taste Correlation	= 	ρ) 0.49 0.01 0.43 0.00 
Log(–1*Switch Cost: Leave Active < ADSO) 3.06 0.06 4.09 0.05 
Log(–1*Switch Cost: Switch from Civilian to Reserve) 4.86 0.05 4.30 0.06 
Personal Discount Factor 𝛽𝛽 (Assumed) 0.88       N/A 0.88        N/A 
–1*Log Likelihood 10,312  11,217  
N 2,576  4,442  
SOURCE: Parameter estimates from cohorts of enlisted personnel entering active duty in 1990–1991.  
NOTE: The scale parameter 𝜅𝜅 governs the shocks to the value functions for staying and for the reserve-versus-civilian 
nest and equals √𝜆𝜆# + 𝜏𝜏#. The means and SDs of tastes for active and reserve service relative to civilian opportunities 
are estimated, as are the costs associated with leaving active duty before completing ADSO and switching from 
civilian status to participating in the reserves. The personal discount factor was assumed to be 0.88 in these models. 
Air Force and Marine Corps models were estimated using a 5-percent and 10-percent random sample of the data, 
respectively. 
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Table 4.6. Transformed Parameter Estimates: Enlisted 

Parameter Army Navy Air Force Marine Corps 
Scale Parameter, Nest = 𝜏𝜏 0.31 2.06 2.99 0.04 
Scale Parameter, Alternatives within Nest = 𝜆𝜆 25.66 19.83 25.83 20.19 
Mean Active Taste = 𝜇𝜇! –16.16 –19.32 –14.37 –44.30 
Mean Reserve Taste = 𝜇𝜇" –50.84 –98.45 –174.10 –1,545.44 
SD Active Taste = 𝜎𝜎! 5.99 7.84 8.42 26.47 
SD Reserve Taste = 𝜎𝜎" 31.44 56.93 115.73 1,030.80 
Taste Correlation = 𝜌𝜌 0.59 0.61 0.46 0.41 
Switch Cost: Leave Active < ADSO –20.08 –17.65 –21.33 –59.50 
Switch Cost: Switch from Civilian to Reserve –110.95 –80.42 –129.35 –73.97 
Personal Discount Factor 𝛽𝛽 (Assumed) 0.88 0.88 0.88 0.88 
NOTE: Transformed parameters are denominated in thousands of 2007 dollars, with the exception of the 
taste correlation and personal discount factor. Definitions of variables are provided in the note for Table 2.4. 

 
 

We found that mean active tastes are negative and equal to –$16,600, –$19,320, –$14,370, 
and –$44,300 for the Army, Navy, Air Force, and Marine Corps, respectively. The negative 
values are consistent with past studies and suggest that the military must pay a relatively high 
wage to compensate for the rigors of military life and retain enlisted members. All estimates of 
mean active taste are statistically different from zero. 

The mean reserve tastes are also negative and are equal to –$50,840, –$98,450, –$174,100, 
and –$1,545,440 for the Army, Navy, Air Force, and Marine Corps respectively. As for the 
variance in tastes, we found that the SD of active-duty taste is largest for the Marine Corps at 
$26,470, while the SD of active-duty taste is smaller for Army, Navy, and Air Force enlisted 
members at $5,990, $7,840, and $8,420, respectively. Similarly, the SD of reserve taste is largest 
for the Marine Corps at $1,030,800, followed by the Air Force at $115,730, the Navy at $56,930, 
and the Army at $31,440. 

The mean taste for reserve duty in the Marine Corps is large and negative, and this might be 
because it reflects not only individual preference for serving in the Marine Corps, but also the 
demand of the Marine Corps for members with prior active service to participate in the reserve 
component. In short, in addition to individual preference, the mean reserve taste also reflects the 
cost or difficulty associated with finding a position in the reserve component that works for the 
individual member, or simply the lack of available positions. 

The estimated scale parameter for the between-nest shock in all the models is much smaller 
than the means and SDs of tastes, while the within-nest shock is of the same order of magnitude 
of the active tastes and uniformly smaller than the means and SDs of the reserve tastes. The 
estimated scale parameters for the between-nest shock in the Army, Navy, Air Force, and Marine 
Corps are $310, $2,060, $2,990, and $40, respectively, none of which are significantly different 
from zero. The within-nest shock parameters are $25,660, $19,830, $25,830, and $20,190 
respectively and are all significantly different from zero. The relative magnitudes of the scale 
parameters suggest that movement between the active nest and the reserve-civilian nest is 
equally driven by random shocks and diverse tastes among enlisted members in all four services, 
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while the movement between civilian and reserve statuses tends to be more driven by taste than 
by random shocks. 

The switching costs for leaving active-duty early, before completing the first term, are  
–$20,080 for Army enlisted members, –$17,650 for Navy enlisted members, –$21,330 for Air 
Force enlisted members, and –$59,500 for Marine Corps enlisted members. The cost of 
switching to a reserve component after being a civilian is –$110,950 for Army enlisted members, 
–$80,420 for Navy enlisted members, –$129,350 for Air Force enlisted members, and –$73,970 
for Marine Corps enlisted members. These high costs might reflect the difficulty of finding an 
available reserve position within traveling distance of where the former active member has 
settled down.  

Simulation and Assessment of Model Fits 
Once the model has been estimated, it can be used to assess model fits and for policy 

simulations.17 The first step in conducting a simulation is to create a population of synthetic 
individuals. Within the context of the model, an individual is an entity with specific preferences 
for active and reserve service and a specific set of random shocks for each alternative in each 
period. Therefore, the simulation creates the individual by a random draw of active and reserve 
preferences from the preference distributions and a set of random draws from the shock 
distributions. Consistent with the model, the individual is assumed to know their preferences, the 
values of the shocks in the current decision period, and the distributions of the shocks (i.e., the 
scale parameters which are used in the individual’s computation of the expected value of the 
maximum in the next period). That is, even though the analyst knows the shocks for each period 
in the individual’s work life, in any period, the individual does not know the values of shocks in 
future periods.  

The second step in a simulation is to specify the compensation structure. Our policy analysis 
generally focuses on comparisons between the current compensation structure and alternative 
structures. The current structure was coded into the model when it was estimated; the observed 
active and reserve retention behavior was conditional on the current compensation structure. 
New coding is required for each alternative structure. The policy alternatives under consideration 
involve changing the structure of the military pay table, as we discuss in the following section. 

The third step is to put the synthetic population into the model; compute each person’s value 
functions recursively, as described previously; and let the person choose an alternative at each 
decision point. The result is a career path that is optimal for the individual, given the 
compensation structure and particular shocks he or she faced in each period. 

 
17 These prefatory comments on the use of simulation draw from Asch et al. (2008). The subsequent model fit 
results draw from Asch, Mattock, and Tong (2020). 
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The fourth and final step is postprocessing. The career information for our synthetic 
individuals includes period-to-period information about their state (active years, reserve years, 
total years, and pay grade). We combine this to create information about the synthetic population 
(its active-duty retention, participation in the selected reserve, highest grade attained, expected 
years of active and reserve service, and compensation cost). We can manipulate this information 
to make cost comparisons subject to holding active-duty personnel strength constant or, 
alternatively, make strength comparisons holding cost constant. When discounting is required, 
we use the discount factor appropriate for the calculation (i.e., the individual’s discount factor for 
calculations from the perspective of the individual or the organizational discount factor for 
calculations from the organization’s perspective). 

The cost concept that we use is current cost rather than life-cycle cost. Life-cycle cost is 
often used in weapon system procurement costing, and it could be used in manpower costing if 
“procuring” a cohort of new entrants is considered purchasing a new asset. However, 
policymakers are accustomed to viewing manpower costs as current outlays, so current costing 
seems more appropriate. With respect to our simulation, we simulate the career behavior of a 
population entering active duty, and to convert our results into a current setting, we adopt the 
assumption that the personnel force is in a steady state. By implication, the active and reserve 
retention behavior that we simulate can be interpreted as the force structure that one would see in 
the cross-section (i.e., in the current period). Under this assumption, we compute two costs: 
current compensation and deferred compensation. Current compensation includes regular 
military compensation plus any gate pays (i.e., continuation pays conditional on reaching YOS 
milestones) and separation pays. Deferred compensation includes outlays required to fund 
defined benefit, and, for the BRS, the defined contribution portion of retirement for vested 
personnel upon their departure from service. For example, if a service member left active duty 
after completing 24 YOS, we register a cost equal to the present discounted value of the stream 
of retirement benefits expected to be paid to the individual in all future periods, under the terms 
of the retirement-benefit system we were simulating and allowing for survival probabilities.  

Assessing Model Fit Through Simulation 

To assess model fit, we used the parameter estimates to simulate the behavior of 10,000 
synthetic service members represented by tastes drawn from the active and reserve taste 
distribution and subject to shocks drawn from a shock distribution with a scale parameter equal 
to the estimated value. Given active and reserve tastes, current-period shock values, knowledge 
of the expected pay and promotion environment in the military and the civilian world, and 
knowledge of the shock scale parameter, each synthetic individual, behaving as a dynamic-
program decisionmaker, makes a stay-leave decision in each YOS in the active component. This 
generates a career length of service in the active component. After leaving active service, the 
individual becomes a civilian and makes a yearly decision regarding reserve participation. If the 
individual is not in the reserves, the decision is whether to participate; if the individual is in the 
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reserves, the decision is whether to continue to participate. These decisions generate information 
about reserve participation by year for the years after active component service. We obtained the 
predicted active component retention profile by adding together these simulated active 
component retention profiles across many simulated individuals, and we similarly combined 
individual reserve participation profiles to obtain the predicted reserve participation profile for 
the population of simulated individuals. The predicted profiles are plotted against the actual 
profiles to assess goodness of fit. 

Model Fit for Officers 

Figures 4.1 through 4.4 show the model fit graphs for the active component for each of the 
four services using the simulation approach described previously. The red lines are simulated 
cumulative retention, and the black lines are retention observed in the data. The figures show the 
Kaplan-Meier survival curves, and the dotted lines show the 95 percent confidence intervals for 
the Kaplan-Meier estimates for the observed data. The horizontal axis counts years since the 
individual was observed beginning active service. The vertical axis shows the cumulative 
probability of retention on active duty until that year. For example, at entry, YOS is zero, the 
fraction of personnel retained is 1, and the fraction of the force retained falls over an active 
career as officers leave active duty. The solid black line shows the actual retention of individuals 
in our cohorts, and the red line shows the predicted retention. The numbers beneath the x-axis 
correspond to the model parameters shown in Tables 4.1 or 4.2 and help to ensure that a given 
figure matches a particular set of estimates. We assess goodness of model fit by visual 
inspection, that is, in terms of how well the black and red lines coincide. 

Visual inspection reveals that model fit for the active component is good for the Army, Air 
Force, and Marines, and that the model captures the general sweep of Navy retention. In all 
cases, the simulated retention line lies close to the observed retention line and reflects the pattern 
of retention seen in the data with attrition first being high, then slowing after mid-career as 
vesting in the defined-benefit retirement plan approaches, and then falling quickly once the 
vesting point is reached. 
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Figure 4.1. Model Fit Results: Active-Component Army Officers 

 

SOURCE: Authors’ computations using DMDC WEX files. 

Figure 4.2. Model Fit Results: Active-Component Navy Officers 

 

SOURCE: Authors’ computations using DMDC WEX files. 
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Figure 4.3. Model Fit Results: Active-Component Air Force Officers 

 

SOURCE: Authors’ computations using DMDC WEX files. 

Figure 4.4. Model Fit Results: Active-Component Marine Corps Officers 

 

SOURCE: Authors’ computations using DMDC WEX files. 
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Model Fit for Enlisted 

Similar to the models of officer retention behavior, to assess model fit, we used the parameter 
estimates to simulate the behavior of synthetic personnel represented by tastes drawn from the 
active/reserve taste distribution and subject to shocks drawn from a shock distribution with a 
scale parameter equal to the estimated value. Figures 4.5 through 4.8 show the model fit graphs 
for the active component for each of the four services. The red lines are simulated cumulative 
retention, and the black lines are retention observed in the data. The figures show the Kaplan-
Meier survival curves, and the dotted lines show the 95 percent confidence intervals for the 
Kaplan-Meier estimates for the observed data. 

The horizontal axis counts years since the individual began active service. The vertical axis 
shows the cumulative probability of retention on active duty until that year. The solid black line 
shows the actual retention of individuals in our cohorts, and the red line shows the predicted 
retention. 

Visual inspection shows that the model fit for the active component is good for the Army, 
Navy, and Air Force, and that the model under-predicts retention for the Marine Corps for YOS 
3–7 and slightly over-predicts retention beyond YOS 10. In all cases, the simulated retention line 
lies close to the observed retention line and reflects the pattern of retention seen in the data, with 
attrition first being high, then slowing after mid-career as vesting in the defined-benefit 
retirement plan approaches, and then falling quickly once the vesting point is reached. 
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Figure 4.5. Model Fit Results: Active-Component Army Enlisted 

 

SOURCE: Authors’ computations using DMDC WEX files. 

Figure 4.6. Model Fit Results: Active-Component Navy Enlisted 

 

SOURCE: Authors’ computations using DMDC WEX files. 

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC Years of Service

R
el

at
ive

 F
re

qu
en

cy

Army − AC

−1.18, 3.25, 2.78, 3.93, 1.79, 3.45, 0.683, 3, 4.71

Observed
Simulated

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

AC Years of Service

R
el

at
ive

 F
re

qu
en

cy

Navy − AC

0.725, 2.99, 2.96, 4.59, 2.06, 4.04, 0.704, 2.87, 4.39

Observed
Simulated



  48 

Figure 4.7. Model Fit Results: Active-Component Air Force Enlisted 

 

SOURCE: Authors’ computations using DMDC WEX files. 

Figure 4.8. Model Fit Results: Active-Component Marine Corps Enlisted 

 

SOURCE: Authors’ computations using DMDC WEX files. 
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Simulation and Extension of the DRM to Model a Time-in-Grade Pay Table 
We also developed a simulation capability to specifically consider the policy scenarios under 

consideration by the 13th QRMC related to the TIG pay table. To simulate the effect on retention 
of changing to a TIG pay table, we needed to extend the DRM in two ways: (1) adapt the model 
to track TIG, i.e., the number of YOS since a member was last promoted and (2) ensure that 
military pay in the model uses TIG rather than TIS. 

The DRM was estimated using data on the behavior of officer and enlisted members under a 
TIS pay table, where the compensation that an individual received was a function of their grade 
and YOS, which could conceptually be written as 

𝑊𝑊"
#, = 𝑊𝑊(𝑎𝑎𝑎𝑎" , 	𝑔𝑔"). 

Under a TIG pay table, the compensation a member receives is a function of their grade and 
the number of YOS since they were promoted to that grade. If we let 𝑝𝑝𝑝𝑝" be the number of YOS 
since a member was last promoted, then we can write their wage as 

𝑊𝑊"
#, = 𝑊𝑊(𝑝𝑝𝑝𝑝" , 	𝑔𝑔"). 

If we change the definition of 𝑘𝑘" by adding 𝑝𝑝𝑝𝑝" as follows, 

𝑘𝑘" = 𝑘𝑘"(𝑎𝑎𝑎𝑎" , 𝑟𝑟𝑟𝑟" , 𝑡𝑡, 𝑔𝑔" , 𝑝𝑝𝑝𝑝"), 

then the rest of the mathematical expressions developed earlier in this chapter still follow 
through. As a result, we could use the parameters estimated with the historical career data and 
TIS pay table to simulate the retention effects of replacing the TIS pay table with the TIG pay 
table. We could also simulate the effects on performance and cost. We discuss how we 
incorporate performance in the next subsection.  

Incorporating Performance into the DRM Simulation Capability 

A major impetus for considering a TIG pay table is that it increases the incentives for 
performance, as discussed in Asch, Mattock, and Tong (2020). We incorporated performance 
into our analysis by focusing on two aspects of individual service members that can affect their 
performance in the military: innate ability and how hard they work. This focus on the inputs of 
performance on the part of the service member is consistent with two of the key objectives of the 
military compensation system related to individual performance: (1) to motivate personnel to 
work hard and effectively and (2) to induce higher-ability personnel to stay and seek 
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advancement to more-senior grades, where it is likely that ability has a bigger impact than in the 
lower ranks.18   

Asch and Warner were the first to incorporate ability and effort supply into a DRM, and they 
used the model to assess the retention, performance, cost effects of alternative retirement reform 
proposals, and policies to restructure the military pay table (Asch and Warner, 1994a, 1994b, 
2001). In their model, higher-ability personnel and those who exert more effort are promoted 
faster and have higher promotion probabilities, but higher-ability personnel also have better 
external opportunities, while expending effort involves a cost or disutility to the member (under 
the assumption that individuals would prefer to exert less effort for the same amount of financial 
benefit or return to effort). Compensation policy can affect the financial returns to exerting more 
effort and the financial benefits to staying for higher-ability personnel. Asch and Warner used 
their DRM to provide simulations of how compensation reforms affected overall retention, the 
retention of higher-ability personnel, ability-sorting into higher grades, average effort supply, 
and personnel cost.  

The Asch-Warner simulations used a calibrated model in which key parameters, such as the 
mean and SD of taste for service, were assumed to replicate the observed retention profile. In 
contrast, the parameters of the DRM shown here and in Asch, Mattock, and Tong (2020) were 
estimated, not calibrated. We built on the Asch and Warner modeling of ability and effort supply 
and incorporated their approach into our DRM simulation capability to evaluate a TIS versus 
TIG pay table. Ideally, we would consider both effort supply and ability simultaneously as 
factors affecting promotion probabilities, an approach taken by Asch and Warner (1994b). But 
we found we were better able to incorporate ability and effort supply by considering them 
separately, as we will discuss in more detail in the following section. In the rest of this 
subsection, we first discuss how we incorporated ability and then effort supply. 

Ability 

We can use the structure of the DRM along with the estimated parameters and assumptions 
about how innate ability affects the speed of promotion to examine how selective the TIG and 
TIS pay tables are on ability. To incorporate ability into the DRM, we made three assumptions:  

1. the extent to which ability differs among military entrants19  

 
18 The objectives of military compensation are listed in Under Secretary of Defense for Personnel and Readiness 
(2018) and have been articulated by past QRMCs as well as the DACMC. 
19 We assumed that the distribution of ability at entry is fixed and the same under TIS and TIG pay tables. Because 
we did not consider the effects of a TIG pay table on recruiting in this study, we did not consider the possibility that 
a TIG pay table might be more attractive to higher-ability recruits, thereby shifting the mean of the ability 
distribution. The implication is that a TIG pay table could have a greater effect on ability of the force than what we 
found in Asch, Mattock, and Tong (2020). 
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2. the extent to which ability affects promotion speed20  
3. the effect of ability on external civilian opportunities.  

We discuss each of these in turn. 
First, we assumed that any given individual has a fixed level of ability at entry, drawn from a 

normal distribution and rounded to the nearest integer. The SD of the distribution indicates the 
extent to which ability differs among military entrants. Regarding rounding, individuals with 
ability drawn from a normal distribution with mean zero and SD 0.5 (and then rounded) would 
typically have values of ability of –1, 0, or 1. We assumed a different mean and SD for each 
service and for enlisted personnel and officers within that service. The values of the mean and 
SD for each distribution we used in our simulations were calibrated to replicate the steady state 
retention profiles of enlisted and officers under the baseline TIS pay table, given the other two 
assumptions we make.  

Second, we assumed that higher-ability personnel are promoted faster. We implemented this 
concept by subtracting the (rounded) draw from the normal distribution for a given individual 
from the TIS between promotions. This increase in promotion speed was modeled to start 
happening between E-5 and E-6 for enlisted members and between O-3 and O-4 for officers. 
Thus, an enlisted member with an innate ability of 1 would reach E-6 one year faster, reach E-7 
two years faster, and so on. An officer with an innate ability of 1 would reach O-4 one year 
faster, reach O-5 two years faster, and so on. Consequently, the effect of ability on promotion 
speed to more-senior grades is larger than for more-junior grades because the effects on 
promotion timing are cumulative. Figure 4.9 shows how years to promotion from E-6 to E-9 vary 
with ability for Army enlisted personnel, while Figure 4.10 shows how years to promotion from 
O-4 to O-7 vary with ability for Army officers. Results will differ for the other services insofar 
as the assumed parameters of the ability distribution differ. As mentioned in the previous 
paragraph, the assumed parameters are calibrated to best fit the retention profile for that service 
and grade category. 

 
20 The model only considers individual attributes in promotion timing and probability, so it does not allow for the 
possibility of the ability distribution skewing higher under TIG, which would result in slowing down the promotion 
of individuals who might have been promoted early under TIS.  
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Figure 4.9. Years to Promotion by Ability Level, Army Enlisted Personnel 

  

SOURCE: Authors’ computations using DMDC WEX files. 

Figure 4.10. Years to Promotion by Ability Level, Army Officers 

 

SOURCE: Authors’ computations using DMDC WEX files. 
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while an individual with innate ability –1 would face a civilian opportunity wage that is 5 percent 
less. 

We illustrate how we calibrated the mean and SD of the normal distribution to fit the 
observed retention profile in Figure 4.11 for Army enlisted personnel. In the process of 
calibration, we systematically varied the mean and SD within the TIS DRM and chose the mean 
and SD that most closely replicated the historically observed retention, as indicated by the 
Kaplan-Meier curve. The right panel shows the observed retention profile versus the simulated 
retention profile when we mis-calibrate the mean and SD to equal 0 and 1.5, respectively. The 
simulated retention profile is too high relative to the observed profile. We chose a SD of 0.5 
instead resulting in a good fit, as shown in the left panel. 

Figure 4.11. Calibrating the Parameters of the Ability Distribution, Army Enlisted Personnel 

Calibrated 
Mean = 0, SD = 0.5 

Mis-calibrated 
Mean = 0, SD = 1.5 

  

SOURCE: Authors’ computations using DMDC WEX files. 
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about how effort affects the probability of an individual being promoted and assumptions about 
the disutility of effort. 

Following Asch and Warner (1994b), we added disutility of effort to the value function in the 
DRM presented previously. The individual’s problem is to choose the level of effort to exert in 
the current period to maximize their utility:  

max
'+

𝑉𝑉#(𝑘𝑘") − 𝑍𝑍(𝑒𝑒"). 

To simplify notation, we define 𝑉𝑉u #(𝑘𝑘") to be the value of staying in the active component net 
the disutility of effort, like so: 

𝑉𝑉u#(𝑘𝑘") ≡ 𝑉𝑉#(𝑘𝑘") − 𝑍𝑍(𝑒𝑒"). 

The first order condition for the optimal level of effort is 

𝜕𝜕𝑉𝑉$ !(𝑘𝑘")
𝜕𝜕𝑒𝑒"

= 	𝛽𝛽	Pr ,𝑉𝑉-𝑆𝑆(𝑘𝑘𝑡𝑡+1) > 𝑉𝑉𝐿𝐿(𝑘𝑘𝑡𝑡+1). /𝑉𝑉-
𝐴𝐴(𝑔𝑔+1)(𝑘𝑘𝑡𝑡+1)−𝑉𝑉-𝐴𝐴𝐴𝐴(𝑘𝑘𝑡𝑡+1)0

𝜕𝜕𝑝𝑝𝑡𝑡+1
𝑔𝑔+1

𝜕𝜕𝑒𝑒𝑡𝑡
− 𝑍𝑍%(𝑒𝑒") ≡ 0 

or 

	Pr ,𝑉𝑉-𝑆𝑆(𝑘𝑘𝑡𝑡+1) > 𝑉𝑉𝐿𝐿(𝑘𝑘𝑡𝑡+1). 𝛽𝛽 /𝑉𝑉-
𝐴𝐴(𝑔𝑔+1)(𝑘𝑘𝑡𝑡+1)−𝑉𝑉-𝐴𝐴𝐴𝐴(𝑘𝑘𝑡𝑡+1)0

𝜕𝜕𝑝𝑝𝑡𝑡+1
𝑔𝑔+1

𝜕𝜕𝑒𝑒𝑡𝑡
≡ 𝑍𝑍%(𝑒𝑒"). 

The interpretation of this expression is that the product of the probability of staying in the 
next period, the discounted difference of the value of being active and promoted and the value of 
being active and not promoted, and the marginal effect of effort on the probability of promotion 
equals the marginal disutility of effort. Or, to put it more simply, the expected marginal return to 
effort equals the marginal disutility of effort. 

If we make some assumptions regarding the functional form of the disutility of effort 
function and the probability of promotion as a function of effort, we can solve for optimal effort 
at time 𝑡𝑡. Similar to Asch and Warner, we let the disutility of effort be 

𝑍𝑍(𝑒𝑒") = 	
𝜂𝜂>
2 𝑒𝑒"* 

and let the probability of promotion be 

𝑝𝑝"-.
,-. =	𝜇𝜇,-.𝑝̅𝑝"-.

,-.𝑒𝑒", 
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where 𝜇𝜇&'( is a parameter that captures the relationship between effort and the probability of 
promotion for a given individual and 𝑝̅𝑝"'(

&'( is the average promotion probability to grade g+1 at 
time t+1. We can rewrite the first order condition as:21 

𝛽𝛽	Pr ,𝑉𝑉-𝑆𝑆(𝑘𝑘𝑡𝑡+1) > 𝑉𝑉𝐿𝐿(𝑘𝑘𝑡𝑡+1). /𝑉𝑉-
𝐴𝐴(𝑔𝑔+1)(𝑘𝑘𝑡𝑡+1)−𝑉𝑉𝐴𝐴𝐴𝐴(𝑘𝑘𝑡𝑡+1)0 𝜇𝜇&'(𝑝̅𝑝"'(

&'( − 𝜂𝜂0𝑒𝑒𝑡𝑡 ≡ 0 

and solve for 𝑒𝑒" as 

𝑒𝑒" =
𝛽𝛽	LMN5O,(Q+-.)S5/(Q+-.)TN5O$(1-.)(Q+-.)U5O$1(Q+-.)T𝜇𝜇𝑔𝑔+1𝑝𝑝V𝑡𝑡+1

𝑔𝑔+1

W3
. 

Given assumptions for the values of the parameters 𝜂𝜂>, 𝜇𝜇,-., and 𝑝̅𝑝"-.
,-., along with our DRM 

parameter estimates, we can solve for 𝑒𝑒" and then simulate how the average level of effort among 
service members differs under the TIS pay table versus the TIG pay table. 

Modeling the Effect of Effort in Multiple Periods to Promote to the Next Grade 

In the previous formulation, the individual has some probability of being promoted in each 
period t and the probability of promotion was dependent on effort in the immediately preceding 
period. In our model, as we described earlier in the chapter, we assume that the probability of 
promotion to a given grade occurs at a given number of YOS, but the probability of promotion 
differs by grade. That is, in our model, promotion occurs at a given point in time for a particular 
grade. An implication of this approach to modeling promotion is that individual’s promotion 
chances might depend on effort over multiple periods. We accommodate this feature by changing 
the assumed form of the probability of promotion function. Instead of the probability being 
dependent on effort in a single period as follows, 

𝑝𝑝"-.
,-. =	𝜇𝜇,-.𝑝̅𝑝"-.

,-.𝑒𝑒" 

it can depend on effort in multiple periods, as in this example: 

𝑝𝑝"-.
,-. =	𝜇𝜇,-.𝑝̅𝑝"-.

,-. y 𝑒𝑒:

"

:="UQ

. 

The expressions for 𝑒𝑒"U., 𝑒𝑒"U*, and so on take on a similar form to the expression for 𝑒𝑒". For 
example, the expression for 𝑒𝑒"U. is: 

 
21 The derivation of this expression requires several steps shown in the appendix. 
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𝑒𝑒"-(	 = 	
𝛽𝛽2	Pr:𝑉𝑉$ !(𝑘𝑘") > 𝑉𝑉.(𝑘𝑘")<Pr:𝑉𝑉$ /(𝑘𝑘"'() > 𝑉𝑉.(𝑘𝑘"'()< =𝑉𝑉$!(&'()(𝑘𝑘"'() − 𝑉𝑉$!&(𝑘𝑘"'()> 𝜇𝜇𝑔𝑔+1𝑝𝑝$𝑡𝑡+1

𝑔𝑔+1

𝜂𝜂0
. 

Note that the values of 𝑉𝑉#(𝑘𝑘") and 𝑉𝑉&(𝑘𝑘'()) depend on the value of 𝑒𝑒", 𝑒𝑒"-., 𝑒𝑒"-*, and so on, so 
we cannot compute the value of 𝑒𝑒"U. without knowing all the future levels of effort, as well as 
any past levels of effort associated with the same promotion point with which 𝑒𝑒"U. is associated. 
In general, if a promotion point probability depends on multiple years of effort, we need to solve 
for all levels of effort associated with a promotion point simultaneously. In our simulations, we 
use an iterative procedure to solve for a set of levels of effort that are stationary; that is, we start 
off with a guess of the optimal level of effort in each period and then (1) solve for the optimal 
level of effort in each period, given that all others are fixed, (2) update the levels of effort, and 
(3) iterate until the computed levels of effort cease to change. We solve for the levels of effort 
associated with the senior-most promotion point first, then the levels of effort associated with the 
next-most-senior promotion point, and so on, until we work our way backward to the initial 
promotion point. 

Solving for the optimal effort supply decision in each year of service for each service 
member in our simulations is a nontrivial task. In the model, these decisions depend on only two 
parameters: the disutility of effort parameter and the relationship between promotion and effort. 
As with the ability parameters, we calibrated the effort-related parameters to replicate the 
cumulative retention profile. Figure 4.12 shows the fit for the Army enlisted model after 
calibrating the effort-related parameters where we ignore ability in the model. The simulated 
profile broadly tracks the observed profile, but the fit is not as good as the one where we 
calibrate only the ability parameter, as shown in Figure 4.11. Consequently, in our presentation 
of results related to the effects of the TIG pay table on effort in Chapter 4 of Asch, Mattock, and 
Tong (2020), we only showed results for Army enlisted personnel and considered our results as 
exploratory. 
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Figure 4.12. Calibrating the Parameters of the Effort Decision, Active-Component Army Enlisted 
Personnel 

    

SOURCE: Authors’ computations using DMDC WEX files. 

Summary 
The DRM is a model with a relatively simple structure, but it can support a rich variety of 

analyses. In this chapter, we extended the DRM to model the promotion process, presented 
parameter estimates, and showed the model fits for enlisted personnel and officers for each 
service. We also discussed how we had extended the simulation capability to permit analysis of 
the TIG pay table, incorporated ability, and the effort supply decision.  
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Chapter 5. Additional Innovations and Extensions to the DRM 

Analyses of different populations, both military and civilian, have required different 
innovations and extensions to the basic DRM. In the previous chapters, we provided an overview 
of RAND DRM analyses, extensions to model promotion, ability, and effort, as well as the 
capability to model a TIG pay table that were done in support of the 13th QRMC. In this chapter, 
we discuss some additional innovations and extensions that we have implemented to meet the 
needs for selected military communities, such as Air Force pilots, military mental health care 
providers, and special operations forces (Mattock et al., 2016; Mattock and Arkes, 2007; Hosek 
et al., 2017; Asch et al., 2019); as well as civilian communities, such as DoD civil servants 
(Knapp, Asch, et al., 2016), state employees (Knapp, Asch, and Mattock, 2021) and public 
school teachers (Knapp et al., 2023). To be specific, we consider four different extensions to the 
model: (1) adding covariates to shift the mean and variance of the taste distribution, (2) modeling 
retention when individuals are offered bonuses and special pays that involve multi-year 
contracts, (3) modeling the transition from one steady-state to a new steady-state, and (4) using 
incumbents to supplement short panels in estimation. 

Adding Covariates to Shift the Taste Distribution 
In the basic DRM, there is a single taste distribution at entry, estimated for an entire 

population. One straightforward extension is to have indicator variables for different 
subpopulations and estimate coefficients on these indicator variables that shift the mean and SD. 
A simple example of this type of extension is in the model of Air Force pilot retention in 
Mattock and Arkes (2007), in which an indicator variable for ROTC graduates was used to shift 
the mode and scale of the taste distribution (which was assumed to be extreme-value distributed). 
The omitted group was Air Force Academy graduates, and the parameter estimates showed that, 
while the taste distribution mode was significantly lower for ROTC graduates, there was no 
significant difference between the two groups in the scale parameter. 

A more sophisticated example of this approach appears in a model of DoD civil service 
retention by Knapp, Asch, et al. (2016), where indicator variables are used to distinguish 
between different cohorts and by veteran status. We will discuss this in more detail in the 
following section. Our exposition draws heavily from Knapp, Asch, et al. (2016). 

The DRM in Asch, Mattock, and Hosek (2014) used data on the 1988 entry cohort of DoD 
general schedule civilian employees. Knapp, Asch, et al. (2016) extended the DRM by using data 
on entry cohorts for 1988 to 2000 and considering the possibility that veterans have a different 
distribution of tastes for DoD civil service from that of nonveterans. That is, we estimated the 
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DRM with additional entry cohorts and allowed for group differences in tastes within an entry 
cohort and across entry cohorts. 

Taste Distribution Differences Across Entry Cohorts and Across Groups 

In the DRM used in Asch, Mattock, and Hosek (2014), we estimated the mean and SD of the 
taste distribution of the 1988 entry cohort. Together with the other parameter estimates, we 
showed that the model fit is extremely good, and, in fact, we conducted out-of-sample 
predictions and found that the model performs very well. Because of these estimates, we 
simulated the retention effects of the 2011–2013 pay freeze and furloughs. 

A natural question is whether the experience and retention behaviors of the 1988 entry cohort 
are representative and whether we would continue to find similar estimates and retention 
responses to policy changes using data for other cohorts. At the heart of this question is whether 
the taste and shock distribution parameters differ across entry cohorts. We focus here on the taste 
distribution. 

There are two reasons that the mean and SD of the taste distribution might change across 
entry cohorts. The first is that individual tastes can change over time. For example, it is common 
for the popular press to point out differences in the career aspirations and cultural attitudes of 
generation X (born between 1965 and 1980, according to the Pew Research Center), millennials 
(born between 1980 and 2000), baby boomers (born between 1945 and 1965), and Depression-
era and wartime (born between 1925 and 1945). The common argument is that younger 
generations evaluate their labor market opportunities and establish priorities that differ from 
those of older generations. However, Stafford and Griffis (2008) reviewed available data and 
literature on how the millennial generation differs from earlier generations and argued that some 
of the characteristics attributed to millennials—or, for that matter, any specific generation at a 
point in time—might be because of life-stage effects that are found in all generations as they 
age.22 That is, different generations might respond in similar fashions when they are at the same 
age. An alternative view is that calendar year, not birth year, is the most relevant for 
decisionmaking. For example, one could argue that changes in societal attitudes and culture over 
time affect all individuals in a similar fashion, regardless of birth year. Thus, the tastes of all 
individuals entering public service in 2000 might differ from those entering in 1988, regardless 
of age. 

Ultimately, whether the taste distribution has changed over time across entry cohorts is an 
empirical issue. We investigated this issue by estimating a combined model using data for all 
entry cohorts that include a separate mean taste parameter for each entry calendar year. We 
estimated the combined model for a specific demographic subset of the data to limit the 

 
22 None of the entrants in our data were millennials because the youngest person was age 22 in 2000, born in 1978. 
The sample nonveterans included baby boomers and generation X-ers, while the veterans included mostly baby 
boomers. 
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possibility that the observed differences are because of changes in the demographic composition 
of the entry cohorts over time. In particular, we estimated a combined model for nonveterans, 
ages 30 or younger, with bachelor’s degrees and no further education. We then tested the 
statistical significance of the mean taste parameters across years for evidence of a shift in tastes 
across entry cohorts, holding group composition constant. 

We found that point estimates of mean tastes differ across entry cohorts but are not always 
statistically significant when we hold group composition constant as mentioned. The 
responsiveness to a pay change also differs across entry cohorts, but the differences are not large. 

A second reason that the estimated taste distribution parameters might differ across entry 
cohort is that entry cohort composition changes over time. Knapp, Asch, et al. (2016), presented 
tabulations of the demographic characteristics of the entry cohorts and how they changed over 
time. The most dramatic change was in the percentage of entrants who were veterans, increasing 
from 5.5 percent in 1991 to 23.5 percent in 1994. This increase accounted for much of the 
increase in mean age over the same period. The changes in veteran representation also affected 
changes in the grade distribution, education distribution, and gender distribution, although these 
changes also occurred among nonveteran entrants. 

Although demographic differences do not automatically translate into differences in tastes for 
DoD civil service, the distribution of tastes for DoD service could differ between veterans and 
nonveterans, and especially between veterans who are military retirees and nonveterans. Military 
retirees have already spent at least 20 years working in support of the military mission and have 
thereby revealed a high taste for DoD employment. Indeed, our DRM estimates for military 
personnel show that mean taste increases with years of service because of selective retention: 
Lower-taste personnel separate and higher-taste personnel stay, while the SD of tastes decreases 
because personnel who stay have more-homogeneous tastes (Mattock, Asch, and Hosek, 2014). 
Consequently, we tested whether military veterans have a different taste distribution from that of 
nonveterans and, specifically, have a higher mean taste and lower SD of taste. We estimated the 
mean and SD of the taste distribution for nonveterans and included parameters that allow the 
mean and SD of the taste distribution for veterans to differ linearly. We also allowed the mean 
and SD of tastes to shift across entry cohorts separately for veterans and nonveterans in our 
combined models and entry cohort–specific models. 

We found that the taste distributions for civil service differ between veterans and 
nonveterans. We estimated higher mean taste among veterans but more-homogeneous tastes 
(lower SD), and these estimated differences are statistically significant from 0. In addition, we 
found evidence that mean taste has changed across entry cohorts because some differences 
across entry cohorts in mean tastes are statistically significant.  

Ideally, we would want to add parameters that allow the taste distribution to shift for 
different demographic groups. This would allow us to test whether the distribution differs across 
groups (e.g., baby boomers and generation X-ers). However, adding parameters also increases 
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the computational burden of estimating the model. For this reason, we focused on differences in 
the taste distributions between veterans and nonveterans. 

Modeling the Effects of Bonuses and Special Pays That Involve a Multi-
Year Contract Choice 
The services often offer bonuses linked to a multi-year obligation to service members who 

are in occupations with a high civilian opportunity wage, who are costly to train, or both. 
Modeling the behavior of members choosing multi-year contracts requires a model of the option 
value associated with being free to choose whether to stay or leave when new information is 
revealed; retention models where members are modeled as knowing with certainty when they 
will leave in the future (such as the ACOL) are unable to model the choice over contract length 
with fidelity (Mattock and Arkes, 2007). The computation of the expected value of the maximum 
in the DRM yields the option value, and, thus, the DRM is well-suited to modeling multi-year 
contracts. An ability to model multi-year contracts is useful in modeling the retention of Air 
Force pilots (Mattock et al., 2016), mental health care workers (Hosek et al., 2017) and special 
operations forces (Asch et al., 2019). We will discuss how we extended the DRM for Air Force 
pilots in some detail here; readers interested in the details of this extension for mental health care 
workers or special operations forces can consult the previously cited documents. Our discussion 
draws heavily on Mattock et al. (2016). 

In Mattock et al. (2016), we extended the DRM in several ways, including by incorporating a 
new method to model the pilot’s choice of a multi-year contract under the aviation bonus (AvB) 
program. Pilots who choose a longer contract receive AvB for more years, but they are also 
locked into their contract and forego the opportunity to take advantage of better opportunities 
that might present themselves during the contract period. The new method involved recognizing 
that the multi-year contract length choice is a nested choice made under uncertainty. The 
uncertainty arises from not knowing the specific future conditions (e.g., assignments, flying time, 
deployments) that accompany these choices. This extension requires estimation of an additional 
parameter in the model related to the variance of the shock associated with the multi-year 
contract choice. In this study, we found the parameter estimate to be statistically significant, 
indicating that this portrayal of the multi-year contract choice is an improved approach to 
modeling the AvB versus contract choice over that in Mattock and Arkes (2007). 

Extending the DRM to Include the Aviator Bonus 

Over the period covered by our data, Air Force pilots were eligible for multi-year contracts 
where they would be paid a retention AvB that typically increased with the length of the service 
commitment the individual elected. The availability of and rules governing eligibility for these 
multi-year contracts varied over time. Consequently, in our model, we incorporated AvB choice 
into both the estimation computer code and the simulation code. 
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Following Mattock and Arkes (2007), we extended the DRM to include the AvB choice by 
adding equations that express the value of the AvB program for different obligation lengths. The 
DRM previously described involves two equations: The first is the value of staying active while 
the second is the value of leaving, which is a nest of the reserve-civilian choice. Because our 
focus here is on the multi-year choice, while a member is on active duty, we will ignore the 
reserve-civilian nest aspect of the model and describe the value of leaving at time t simply as 𝑉𝑉"$.  

The equation 𝑉𝑉"! gives the value of staying active for one additional year at time t. Thus, we 
can write the value of staying active for one more year as 

𝑉𝑉"
!
. = 𝑉𝑉"

#
. + 𝜖𝜖"# = 𝛾𝛾( +𝑊𝑊"

( + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽[𝑉𝑉"-.$ , 𝑉𝑉"-.! ] + 𝜖𝜖"
#
.  

where 𝑊𝑊"
( includes aviation incentive pay.  

We can write the value of staying active and taking the AvB with a three-year obligation as 

𝑉𝑉"
!
X = 𝑉𝑉"

#
X + 𝜖𝜖"

#
X = y𝛽𝛽3

*

3=>

z𝛾𝛾( +𝑊𝑊"
(
X{ + 𝛽𝛽X𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸[𝑉𝑉"-X$ , 𝑉𝑉"-X! ] + 𝜖𝜖"

#
X , 

where 𝑊𝑊"
4
5 includes AvB for the 3-year contract and AP.  

Similarly, we can write the value staying active and taking AvB with a k-year obligation as 

𝑉𝑉"
!
Q = 𝑉𝑉"

#
Q + 𝜖𝜖"

#
Q = y𝛽𝛽3

QU.

3=>

z𝛾𝛾( +𝑊𝑊"
(
Q{ + 𝛽𝛽Q𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸[𝑉𝑉"-Q$ , 𝑉𝑉"-Q! ] + 𝜖𝜖"

#
Q . 

An eligible pilot compares the value of leaving 𝑉𝑉"$ with the maximum of the value of staying for 

one year, 𝑉𝑉"
,
.,  

three years, 𝑉𝑉"
,
5,  

five years, 𝑉𝑉"
,
6,  

or k years where k could be ten or more years in the case of an until-20 YOS option. If the 3-
year, 5-year, and until-20 YOS options are offered, the probability that an initially offered pilot 
stays active is: 

Pr a𝑚𝑚𝑚𝑚𝑚𝑚 z𝑉𝑉"
!
., 𝑉𝑉"

!
X, 𝑉𝑉"

!
Y, 𝑉𝑉"

!
*>Z0[{ > 𝑉𝑉$b. 
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Similar to the reserve-civilian choice, the contract length choice can be handled as a nested 
choice. If we assume the random shocks of the contract length choice follow an extreme value 
distribution, then we can write 

 𝜖𝜖"
$
7~𝐸𝐸𝐸𝐸[−𝜙𝜙𝜆𝜆*, 𝜆𝜆*],  

where 𝜆𝜆* is the shape parameter and is subscripted with a 2 to distinguish it from the shape 
parameter associated with the within reserve-civilian nest shock, defined previously, which we 
will now denote as 𝜆𝜆. (e.g., 𝜔𝜔"%~𝐸𝐸𝐸𝐸|−𝜙𝜙𝜙𝜙1, 𝜆𝜆1}). Thus, the AvB choice adds an additional 
parameter to be estimated. In the model without the contract length choice nest, the scale of the 
error in the value function for leaving was 𝜅𝜅 = √𝜆𝜆* + 𝜏𝜏*, which we now relabel as 

 𝜅𝜅 = G𝜆𝜆.* + 𝜏𝜏.*.  

By similar logic, the scale in the value function for staying with the contract length choice 
nest can be written 

 G𝜆𝜆** + 𝜏𝜏**.  

Imposing the requirement that the scales be equal, we have 𝜅𝜅 = G𝜆𝜆** + 𝜏𝜏**. When estimating 
the model, we estimate 𝜅𝜅, 𝜆𝜆., and 𝜆𝜆* and treat 𝜏𝜏. and 𝜏𝜏*	as slack variables (that is, variables that 
are set to levels implied by the relationship between 𝜏𝜏. and 𝜏𝜏* and the other variables). 

Similar to the reserve-civilian choice, service members might have the option to make 
multiple contract choices over their career. For example, they might choose a 1-year contract at 
first, then choose a 5-year contract, and then follow that with a 3-year contract before leaving. 
Because our data did not indicate which contract choice pilots made or the sequence of contract 
choices, we instead calculated the probability of observing a pilot staying a particular number of 
years and then leaving or being censored by summing up all possible sequences of contract 
decisions for the purposes of constructing the likelihood function. The method we used to 
compute the probability of all possible paths follows the logic in Mattock and Arkes (2007). As 
discussed in that paper, most paths have a near-zero probability. We exploited this fact in our 
calculations by noting that if one term of a product of probabilities is zero, the entire expression 
is zero. This saved us from having to explicitly calculate the other terms in the cumulative 
probability expression. 

The multi-year contract extension enabled us to provide recommendations for AvB policy in 
Mattock et al. (2016), and also gave us the capability to assess the relative cost-effectiveness of 
retaining versus accessing Air Force pilots in Mattock et al. (2019). More generally, it also 
enabled us to consider other cases where bonus pays entail a multi-year contract, such as 
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selective retention bonuses (SRB)s, and multi-year special pays for psychiatrists and other 
mental health care providers, as well as certain special pays for special operations forces. 

Modeling the Transition from One Steady State to a New Steady State 
In many cases, the DRM has been used to assess the effects of policy changes in the steady 

state. In the case of the military, where the typical military career is 30 years, it would take 30 
years to reach the new steady state as a result of a policy change. However, policymakers are 
often concerned about the effects of a policy change in the transition to the steady state (i.e., 
during the 30-year period before the new steady state is reached) and how different 
implementation strategies can affect the 30-year time path. In this section, we discuss our 
extension to the DRM to enable modeling the transition to a new steady state. The following 
exposition draws heavily from Asch, Mattock, and Hosek (2013). 

A common implementation strategy is to grandfather in existing members so only new 
entrants are covered by any policy change. Grandfathering is often desirable because 
policymakers do not want to break the implicit contract with existing service members. The 
problem with this approach is that it can take a long time before the effects of a policy are 
realized. Policymakers must wait until existing service members flow through and separate and 
new members get enough experience to be affected by the policy. One solution to this problem, 
as we describe in the following section, is to grandfather existing members but also give them 
the choice to switch to the new system. By offering a choice, the shift to a new policy allows 
service members under the existing policy to continue with it or, if they prefer, to opt for the new 
policy. More people will be under the new system more quickly if substantial numbers choose to 
switch, so it allows policymakers to move toward the steady state faster. Furthermore, faith has 
not been broken, and those who decide to change would do so only if they expect to be better off 
under the new policy. 

Existing methodologies typically used to assess the transition phase and the effects of 
transition strategies are either severely limited or logically inconsistent.  For example, personnel 
inventory projection models cannot be used to analyze the effects of allowing grandfathered 
members to switch to a new system because it does not include a model of decisionmaking that 
would logically allow members to change their behavior during the transition. Similarly, the so-
called ACOL approach, in which estimates of retention responsiveness to pay are used to 
simulate the retention effects of pay changes over some time period, has been shown to be 
inconsistent with rational optimizing behavior and assumes away the possibility that individuals 
might change their minds when new information is revealed to them.  

The DRM has neither of these disadvantages; it is logically consistent and can permit 
analysis of behavioral changes among incumbent members during the transition period. To do 
this, we extended the mathematical model that defines the DRM to incorporate a fourth time 
clock. This is in addition to the three time clocks that track years of service in the active 
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component, years of service in the reserve component, and total years since initial accession or 
enlistment. Specifically, we add a clock that accounts for the service member’s state when the 
policy occurs. We call this state the service member’s cohort, defined by the service member’s 
years of service when the policy change occurs. (Note that this cohort numbering convention 
differs from the usual, in that lower numbers are associated with newer cohorts and higher 
numbers with older cohorts.) We then use recent DRM parameter estimates to develop computer 
code that implements the extended model and permits us to simulate retention behavior for each 
cohort. Importantly, the extended model allows us to simulate both the retention behavior of each 
cohort over time and the retention behavior of all cohorts in the aggregate (i.e., a cross-section 
across all cohorts) for each time period since the policy change occurred. Thus, the total force 
can be observed in each period as a force planner or programmer might want to see it. We can 
simulate retention behavior in the 30-year transition. 

Simulating how the retention curve evolves over time in the transition to a new steady state 
when a compensation policy change occurs requires that we do a year-by-year simulation of the 
retention curve starting from the year in which the policy changed to when the new steady state 
is reached. This simulation uses as input the cohort-specific retention survival curves described 
in the previous subsection.  

Representing time properly requires careful attention. Consider the first year after the policy 
change is enacted. If s is time elapsed since the policy occurred, then s = 0 is the year when the 
policy occurred and s = 1 is the first year after the policy change. At time s = 1, those in YOS 2 
were those who were in YOS 1 at s = 0. Similarly, those in YOS 3 at s = 1 were those in YOS 2 
at s = 0. An alternative way to express this relationship is to say that at time s = 1, those in YOS 
2 were in cohort = 1 at s = 0, and those in YOS 3 at s = 1 were in cohort = 2 at s = 0. Thus, the 
retention survival probability to YOS = ta at s = 1 is the survival probability of the ta-1 cohort, 
aged one year. More generally, the retention probability to YOS = ta at s is the survival 
probability for cohort c = ta-s, aged s years. Thus, elapsed time since the policy occurred is given 
by s = ta – c. 

We can illustrate how we select the relevant probabilities from each cohort retention survival 
curve as time elapses by considering Tables 5.1 and 5.2. The columns in Table 5.1 indicate YOS 
and are numbered from ta = 1 to 30, where 30 is assumed to be the maximum length of an active 
component career. The rows indicate the cohort, defined by the YOS that the member is in when 
the policy occurs, also spanning from 1 to 30. Each cell in the table represents the cumulative 
probability of reaching YOS = ta for cohort c. For example, the element in the first row, fifth 
column is the cumulative probability that an entrant in cohort 1 stays in active component service 
through YOS ta = 5. Similarly, the elements in the last column are the cumulative probability that 
an entrant in given cohort stays for a full 30-year career. 

To illustrate how we compile the retention survival curves over time as s increases in Table 
5.1, we show only the time clock s associated with the cumulative probabilities in Table 5.1. The 
baseline steady state is given by s = 0. We compile the baseline steady state retention curve by 
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selecting the diagonal elements in Table 5.1 and labeled s = 0 in bold font in Table 5.2. We 
compile the retention curve at s = 1 (one year elapsed after the policy occurs) as the first off-
diagonal elements in Table 5.1—the cells labeled s = 1 in Table 5.2. The cells that are in light 
font in Table 5.2—the lower diagonal section of the table—are probabilities that are for career 
segments that occur before the policy was enacted. For example, years of service 1 through 3 for 
cohort = 4 (e.g., those with 4 YOS when the policy was enacted) occur prior to the policy. 
Therefore, we assign the baseline steady state retention survival probabilities to these cells. 
These are also denoted as s = 0 in Table 5.2 (in light font).  
 

Table 5.1. How We Develop Retention Profiles by Time Elapsed: Cumulative Probabilities 

 ta  =  1 ta = 2 ta = 3 ta = 4 ta = 5 … ta = 29 ta = 30 

c = 1 p(1,0,1,1) p(2,0,2,1) p(3,0,3,1) p(4,0,4,1) p(5,0,5,1)  p(29,0,29,1) p(30,0,30,1) 
c = 2 p(1,0,1,1) p(2,0,2,2) p(3,0,3,2) p(4,0,4,2) p(5,0,5,2)  p(29,0,29,2) p(30,0,30,2) 
c = 3 p(1,0,1,1) p(2,0,2,2) p(3,0,3,3) p(4,0,4,3) p(5,0,5,3)  p(29,0,29,3) p(30,0,30,3) 
c = 4 p(1,0,1,1) p(2,0,2,2) p(3,0,3,3) p(4,0,4,4) p(5,0,5,4)  p(29,0,29,4) p(30,0,30,4) 
c = 5 p(1,0,1,1) p(2,0,2,2) p(3,0,3,3) p(4,0,4,4) p(5,0,5,5)  p(29,0,29,5) p(30,0,30,5) 
…         
c = 29 p(1,0,1,1) p(2,0,2,2) p(3,0,3,3) p(4,0,4,4) p(5,0,5,5)  p(29,0,29,29) p(30,0,30,29) 
c = 30 p(1,0,1,1) p(2,0,2,2) p(3,0,3,3) p(4,0,4,4) p(5,0,5,5)  p(29,0,29,29) p(30,0,30,30) 
NOTE: The cells in the table are cumulative probabilities where each probability is given by p(ta, tr, tt, c). The 
columns are year of active service ta and the rows indicate cohort c. 

 

Table 5.2. How We Develop Retention Profiles by Time Elapsed: Value of the s (Time-Elapsed) 

 ta = 1 ta = 2 ta = 3 ta = 4 ta = 5 ta = 6 ta = 7 … ta = 29 ta = 30 

c = 1 s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6  s = 28 s = 29 

c = 2 s = 0 s = 0 s = 1 s = 2 s = 3 s = 4 s = 5  s = 27 s = 28 

c = 3 s = 0 s = 0 s = 0 s = 1 s = 2 s = 3 s = 4  s = 26 s = 27 

c = 4 s = 0 s = 0 s = 0 s = 0 s = 1 s = 2 s = 3  s = 25 s = 26 

c = 5 s = 0 s = 0 s = 0 s = 0 s = 0 s = 1 s = 2  s = 24 s = 25 

c = 6 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 1  s = 23 s = 24 

c = 7 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0  s = 22 s = 23 

…           

c = 29 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 1 

c = 30 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 s = 0 

NOTE: The table cells only show s, the time-elapsed clock for the cumulative probability in Table 
2.2 where s is defined as ta-c. The columns are year of active service ta and the rows indicate 
cohort c. 
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We have used the capability to analyze the transition to a new retirement system (Asch, 
Mattock, and Hosek, 2013), policies for drawing down the force (Mattock, Hosek, and Asch, 
2016), the effect over time of making the reserve component retirement system more similar to 
the active component system (Mattock, Asch, and Hosek, 2014) and the dynamics of a pay 
freeze on DoD civil servants (Asch, Mattock, and Hosek, 2014), as well as in many other reports. 
The general approach we take to extending the DRM to the transition period between steady 
states should be readily adaptable to alternative structural models of retention. 

Using Incumbents to Supplement Short Panels in Estimation 
The model we described in the previous chapters was estimated using a population that we 

observed from the beginning of their careers. Fortunately, we had a panel for estimation of up to 
26 years. But, in some applications, the longitudinal datasets are shorter. For example, data 
might not be available, as we found for certain state and local pension systems. Or, in the case of 
the military, a group is relatively new, such as a new occupation or force (e.g., the Space Force). 
The lack of a long time series can be challenging when the analysis is focusing on retirement 
behavior because there will be no observations of years during which, for example, a population 
might be retirement-eligible. (This need not be a completely debilitating problem; some initial 
empirical estimates of the military DRM were done using datasets where no one had yet reached 
retirement vesting at 20 YOS.) 

We first extended the DRM to the use incumbents to supplement our longitudinal data when 
we were modeling teacher retention (Knapp, Brown, et al., 2016). The teacher retention model is 
a stay-versus-leave model, and, thus, the taste distribution is univariate normal (as opposed to the 
bivariate normal distribution in the model described in the previous chapter). The main concern 
in using data from incumbent teachers is that the teachers who are present are the result of a 
process that had resulted in a posterior population taste density that might be quite different from 
the initial taste density. Put another way, we cannot simply assume that the taste distribution of 
incumbent teachers is normal with the same mean and SD as initial entrants. What we need to do 
is find a way of computing the posterior taste distribution of incumbent teachers when we first 
observe them. To do so, we need to assume the taste distribution for entering cohorts is 
stationary over time, and that the retention process is also stationary (that is, the probability that a 
person is retained in a particular period given their taste is the same over time). Given these 
assumptions, we can compute the posterior taste distribution given an incumbent has been 
present for a set number of years. The discussion in the following section that describes how we 
go about this draws heavily on Asch, Knapp, and Mattock (2022). 

Before discussing how we can use data from incumbent teachers, it will be helpful to discuss 
how we form the likelihood function for those teachers we observe for their entire careers. Given 
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independent shocks in each period, the cumulative probability that teacher i will stay through 
service year t – 1 may be written:23 

	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆):," = ∏ 𝑃𝑃𝑃𝑃:,<-.(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)"U.
<=> . 

The cumulative probability that teacher i stays for t – 1 years and leaves at t is 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿):," = ∏ 𝑃𝑃𝑃𝑃:,<-.(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)(1 − 𝑃𝑃𝑃𝑃:,"(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆))"U*
<=> .  

These probabilities are conditioned on the unobserved taste parameter 𝛾𝛾. We assume the taste 
parameter has a normal distribution 𝑔𝑔(𝛾𝛾) with mean 𝜇𝜇 and SD 𝜎𝜎. We use this information to 
formulate the expected cumulative probability of a given career path, or the likelihood of that 
path. Thus, for teacher i in our data who stays through t – 1 and leaves at t, the likelihood of that 
career path is 

ℒ:(𝜇𝜇, 𝜎𝜎, 𝜆𝜆, 𝛽𝛽) = ∫ ∏ 𝑃𝑃𝑃𝑃:,<-.(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)(1 − 𝑃𝑃𝑃𝑃:,"(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆))"U*
<=> 𝑔𝑔(𝛾𝛾)𝑑𝑑𝑑𝑑]

U] .  (1) 

Similarly, if the individual stays through t and is then censored, the likelihood is 

ℒ:(𝜇𝜇, 𝜎𝜎, 𝜆𝜆, 𝛽𝛽) = ∫ ∏ 𝑃𝑃𝑃𝑃:,<-.(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)"U.
<=> 𝑔𝑔(𝛾𝛾)𝑑𝑑𝑑𝑑]

U] . 

Thus, the likelihood for the entire data sample, N, is given by 

ℒ(𝜇𝜇, 𝜎𝜎, 𝜆𝜆, 𝛽𝛽) = ∏ ℒ:(𝜇𝜇, 𝜎𝜎, 𝜆𝜆, 𝛽𝛽)^
:=. . 

To consider incumbent teachers who entered prior to the period of observation we need to 
extend our model. For concreteness, let us consider South Carolina public school teachers. Our 
data included new entrants from 2008 to 2015 who were followed to 2020; however, such a 
sample provides no observations of years where individuals are retirement eligible. To augment 
the sample, we extended the DRM to allow inclusion of teachers who were incumbent in 2008, 
on whom we had longitudinal data from 2008 forward to 2020. The extension assumed their taste 
distribution at entry was the same as the taste distribution of the 2008–2015 new entrants. Under 
this assumption, we expressed their conditional taste distribution as of 2008 in terms of the new 
entrant taste distribution and the cumulative probability that individuals of a given taste who 
entered in years before 2008 and stayed until 2008. Like 2008–2015 new entrants, they were 
then followed forward to 2020 and in each year could choose to stay or leave. 

 
23 At entry, each teacher is assumed to decide to stay for the first period. In other words, when a teacher enters, it is 
assumed that the teacher has in effect decided to stay for the first period: 𝑃𝑃𝑃𝑃',((𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 1. Hence, the first stay-
versus-leave decision occurs at the beginning of the second period.  
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The density of taste 𝛾𝛾 at the start of year of service 𝑡𝑡 conditional on staying continuously 
from entry is  

𝑝𝑝(𝛾𝛾|𝑠𝑠>, 𝑠𝑠., … , 𝑠𝑠"U.) = 𝑝𝑝(𝛾𝛾, 𝑠𝑠>, 𝑠𝑠., … , 𝑠𝑠"U.)/𝑝𝑝(𝑠𝑠>, 𝑠𝑠., … , 𝑠𝑠"U.) 	= 

_`𝑠𝑠>, 𝑠𝑠., … , 𝑠𝑠"U.a𝛾𝛾b,(B)
_(<3,<.,…,<+:.)

.  (2) 

Here, 𝑝𝑝(𝑠𝑠>, 𝑠𝑠., … , 𝑠𝑠"U.|𝛾𝛾) is the probability that a teacher stays continuously to complete 𝑡𝑡 − 1 
years of service (i.e., stays to the beginning of period t) given a particular value of taste drawn at 
entry into teaching. As before, the density of taste for new entrants is 𝑔𝑔(𝛾𝛾). The denominator, 
𝑝𝑝(𝑠𝑠>, 𝑠𝑠., … , 𝑠𝑠"U.), is the probability of staying continuously to complete 𝑡𝑡 − 1 YOS averaged 
over all values of taste (that is, taste is integrated out). 

The DRM is a first-order Markov process, so the probability of staying in 𝑡𝑡 − 1 given that 
one has stayed continuously from entry through 𝑡𝑡 − 2 is just the probability of staying in 𝑡𝑡 − 1 
given staying in 𝑡𝑡 − 2, and so forth. The expression in the numerator of (2) can then be written  

𝑝𝑝(𝑠𝑠>, 𝑠𝑠., … , 𝑠𝑠"U.|𝛾𝛾) = 	𝑝𝑝(𝑠𝑠"U.|𝛾𝛾)𝑝𝑝(𝑠𝑠"U*|𝛾𝛾)…𝑝𝑝(𝑠𝑠>|𝛾𝛾). 

Also, the denominator in (2) is this probability averaged over taste: 

𝑝𝑝(𝑠𝑠>, 𝑠𝑠., … , 𝑠𝑠"U.) = ∫ 𝑝𝑝(𝑠𝑠"U.|𝛾𝛾)𝑝𝑝(𝑠𝑠"U*|𝛾𝛾)…𝑝𝑝(𝑠𝑠>|𝛾𝛾)𝑔𝑔(𝛾𝛾)𝑑𝑑𝑑𝑑
]
U] . 

These results imply that (2) can be written as 

𝑝𝑝(𝛾𝛾|𝑠𝑠>, 𝑠𝑠., … , 𝑠𝑠"U.) =
_`𝑠𝑠"U.a𝛾𝛾b_`𝑠𝑠"U*a𝛾𝛾b…_`𝑠𝑠>a𝛾𝛾b,(B)

∫ _`𝑠𝑠"U.a𝛾𝛾b_`𝑠𝑠"U*a𝛾𝛾b…_`𝑠𝑠>a𝛾𝛾b,(B)eB;
:;

. 

The usefulness of this expression for the conditional probability of taste given some period of 
staying (left-hand side) comes from breaking it into a product of per-period stay probabilities of 
known form multiplied by the a priori taste distribution, also of known form (assumed to be 
normal), divided by an average value that can be computed from the same expressions. 

Returning to our South Carolina example and using the conditional density of taste for an 
incumbent teacher’s YOS as of 2008, we can construct probability expressions for the 
incumbent’s retention decisions in years from 2008 forward in the same fashion as for new 
entrants, where the unconditional density of taste was used. For example, consider teachers who 
served continuously from entry and were making a stay-versus-leave decision at the beginning of 
YOS 20 in 2008. These teachers began in 1989 and had already completed 19 YOS. The 
conditional taste distribution for these teachers is  

_`𝑠𝑠.fa𝛾𝛾b_`𝑠𝑠.ga𝛾𝛾b…_`𝑠𝑠>a𝛾𝛾b,(B)
∫ _`𝑠𝑠.fa𝛾𝛾b_`𝑠𝑠.ga𝛾𝛾b…_`𝑠𝑠>a𝛾𝛾b,(B)eB;
:;

. 
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In developing the likelihood for these teachers, this taste distribution was used in place of the 
original taste distribution 𝑔𝑔(𝛾𝛾) in (1), and their retention decisions were tracked from 2008 
through 2020, the last period observed in the data set.  

So, if we are willing to assume stationarity in the taste distribution for initial entrants, we can 
derive expressions for the posterior distribution of taste that allow us to use observations on the 
retention of incumbents. This is advantageous when the available longitudinal data are short 
relative to the policies of interest (such as the structure of a retirement system). 

Concluding Remarks 
In this chapter, we showed four additional innovations of and extensions to the basic DRM 

model, from a relatively simple innovation (allowing regression variables to shift the mean and 
SD of the taste distribution) to the more complex (multi-year contracts, transition to a new steady 
state, and using information from incumbents). Throughout, we see that the rigor and richness of 
the DRM can support substantive innovations to address new challenges in a logically consistent 
and coherent manner. 
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Chapter 6. Conclusion 

The DRM has proven to be a practical capability for modeling the retention of military 
personnel, civil service employees, public school teachers, and state employees. It uses a 
rigorous, logically consistent framework and has been successfully extended to assess multiple 
policies of interest, such as retirement reform, the structure of the pay table, and the structure of 
special and incentive pays. Here we will discuss what we have learned in the past, including the 
limitations of the DRM, and what we hope for the future from the DRM and succeeding models. 

Looking Backward 
The DRMs used in our analyses have several limitations. We will confine our remarks here 

to the military DRM, but similar remarks could apply to our other models. The DRM does not 
explicitly model other factors that can affect retention and retirement (including health status and 
health care benefits) or household factors (such as spousal labor supply or the presence of 
children at home). The analysis focuses on retention and does not model the decision to enlist or 
access into the military. Consequently, the model cannot address how changes to pension design 
might affect the types of people who become service members.  

Another limitation is that the model assumes risk neutrality. The utility function is assumed 
to be linear in compensation. While, conceptually, a more flexible functional form could be used, 
practically speaking, the computational challenges are formidable. 

Another limitation of the model is that it assumes that the individuals making decisions fully 
understand the implications of their decisions. That is, the model makes strong assumptions 
about the rationality of the individuals who are making retention decisions.  

That said, the estimated models fit the observed data well. Our approach has several rich and 
realistic features that make it well suited for analyzing the retention effects of alternative 
compensation policies and pension reform. It is a life-cycle model where retention decisions are 
made each year over an entire career and not just once. Those decisions are based on forward-
looking behavior that depends on existing and future military and external compensation. The 
model allows for uncertainty in future periods and recognizes that people might change their 
minds in the future as they get more information about staying in the military and their external 
opportunities. Furthermore, the model is formulated in terms of the parameters that underlie the 
retention decision processes rather than on the average responses to historical changes in policy. 
Consequently, it is structured to enable assessments of alternative compensation reforms that 
have yet to be tried. Put differently, the DRM is particularly suited to assess major structural 
changes in the compensation system that do not have any historical antecedent. 
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Looking Forward 
The main challenge to expanding the DRM, either by taking into account additional 

demographic variables or by using a more flexible functional form to account for risk aversion, is 
computational. As the state space gets larger, the “curse of dimensionality” rears its ugly head, 
and models rapidly become unwieldy. Part of the art of modeling is being able to identify the key 
elements that need to be modeled and designing a parsimonious and computable model. 

In addition, there are challenges associated with modeling the evolution of expectations of 
individuals when, for example, promotion rates change over time or special and incentive pays 
change. As of this writing, our models assume rational expectations, i.e., that individuals have 
perfect foresight of future conditions, but a more realistic mode of expectations formation is 
desirable. 

Furthermore, all our models have so far been partial-equilibrium models of individual labor 
supply. Extending the model to consider demand-side factors, such as the impact of increased 
retention on promotion rates, time-to-promotion, and the future trajectory of military earnings is 
an area that should be explored. 

However, there is reason for optimism. Estimating the DRM became feasible over the past 
four decades because of improvements in both software and hardware. While technically the 
DRM is embarrassingly parallel because the stochastic dynamic programming problems for 
each of the individual support points in the taste distribution can be solved in parallel, the 
individual stochastic dynamic programs are irreducible. However, new technologies in the form 
of quantum computing and artificial intelligence/machine learning–aided optimization might yet 
come to the rescue. Alternative estimation strategies, such as those used by Hotz and Miller 
(1993) and surveyed in Aguirregabiria and Mira (2010) might yet prove helpful in identifying 
fruitful starting values for estimating a DRM by more-conventional methods. Improvements in 
speed will aid in creating models that model expectations in a more realistic manner and the 
possibility of moving beyond purely partial-equilibrium models. 
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Appendix. Thematic RAND DRM Bibliography 

This appendix provides a list of RAND studies organized by policy area. These studies were 
published on or after 2007 and all feature analyses based on DRMs in which the parameters were 
estimated using empirical data rather than calibrated. 

Military Compensation 

Studies for the Office of the Secretary of Defense (OSD) 

OSD—Military Retirement Reform 

This thread of research explored military retirement reform (Asch et al., 2008) and 
documented support provided to decisionmakers within DoD (Asch, Hosek, and Mattock, 2014) 
and the Military Compensation and Retirement Modernization Commission (Asch, Mattock, and 
Hosek, 2015) that culminated with work in support of OSD implementation of the BRS (Asch, 
Mattock, and Hosek, 2017). Of note: the active, civilian, and reserve DRM for enlisted members 
of the Army, Navy, Air Force and Marine Corps was first documented in Asch et al., 2008, later 
extended to officers in Mattock, Hosek, and Asch, 2012 (see under heading “OSD—Reserve 
Compensation and Retirement Reform”), and further extended to the U.S. Coast Guard in Asch, 
Mattock, and Hosek, 2017. 

 
Asch, Beth J., James Hosek, and Michael G. Mattock, Toward Meaningful Compensation 

Reform: Research in Support of DoD’s Review of Military Compensation, RAND 
Corporation, RR-501-OSD, 2014.  

Asch, Beth J., James R. Hosek, Michael G. Mattock, and Christina Panis, Assessing 
Compensation Reform: Research in Support of the 10th Quadrennial Review of Military 
Compensation, RAND Corporation, MG-764-OSD, 2008. 

Asch, Beth J., Michael G. Mattock, and James Hosek, Reforming Military Retirement: Analysis 
in Support of the Military Compensation and Retirement Modernization Commission, RAND 
Corporation, RR-1022-MCRMC, 2015. 

Asch, Beth J., Michael G. Mattock, and James Hosek, The Blended Retirement System: Retention 
Effects and Continuation Pay Cost Estimates for the Armed Services, RAND Corporation, 
RR-1887-OSD/USCG, 2017. 
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OSD—Pay Table and Related Analyses 

This thread of research used the DRM to the study the impact of alternative pay table policies 
on retention. Asch et al. (2016) used the DRM to show the effects of the 2007 policy changes, 
effects of the 2014 policy change, effects of reverting to the 30-year table, and cost and cost 
savings under a 40-year versus 30-year pay table. Asch et al. (2018) showed the effect of capping 
retired pay for senior (over 30 YOS) field-grade officers under the 40-year pay table, particularly 
for those officers with prior enlisted service. Asch, Mattock, and Tong (2020) simulated the 
effect of switching to a TIG pay table on retention, cost, retention of higher-ability members, and 
individual member effort supply. 
 

Asch, Beth J., James Hosek, Jennifer Kavanagh, and Michael G. Mattock, Retention, Incentives, 
and DoD Experience Under the 40-Year Military Pay Table, RAND Corporation, RR-1209-
OSD, 2016.  

Asch, Beth J., Michael G. Mattock, James Hosek, and Patricia K. Tong, Capping Retired Pay for 
Senior Field Grade Officers: Force Management, Retention, and Cost Effects, RAND 
Corporation, RR-2251-OSD, 2018.  
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OSD—Special and Incentive Pays 

This thread of research focused on special and incentive (S&I) pays. The methodology 
developed to study multi-year contracts for Air Force pilots (Mattock, Hosek, and Asch, 2016; 
see under heading “Air Force”) was applied to military mental health care providers (Hosek et 
al., 2017), as well as Army and Navy special operations forces (Asch et al., 2019). The Air Force 
pilot model was used as a means to compare retention incentives tied to a service obligation with 
a straight wage differential with no associated service obligation in Hosek, Mattock, and Asch 
(2019). Finally, the Air Force pilot model was used to assess the potential impact of paying the 
full rate of S&I pays to members of the reserve components in Marrone et al. (2022). 
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Marrone, James V., Michael G. Mattock, Beth J. Asch, and Hannah Acheson-Field, Payment of 
the Full Rate of Special and Incentive Pays to Members of the Reserve Components, RAND 
Corporation, RR-A669-1, 2022.  

Mattock, Michael G., James Hosek, Beth J. Asch, and Rita T. Karam, Retaining U.S. Air Force 
Pilots When the Civilian Demand for Pilots Is Growing, RAND Corporation, RR-1455-AF, 
2016. 

OSD—Reserve Component Compensation and Retirement Reform  

Two reports for OSD focused on reserve component compensation and retirement reform: 
Asch, Hosek, and Mattock (2013) and Mattock, Hosek, and Asch (2012). Mattock, Hosek, and 
Asch (2012) featured DRM estimates for both officers and enlisted members of the Army, Navy, 
Air Force, and Marine Corps; while the study was about reserve compensation, the estimated 
model produced results for both the active and reserve component. Asch, Hosek, and Mattock 
(2013) applied the (then) recently estimated model to reserve retirement reform. 

 
Asch, Beth J., James Hosek, and Michael G. Mattock, A Policy Analysis of Reserve Retirement 

Reform, RAND Corporation, MG-378-OSD, 2013. 

Mattock, Michael G., James Hosek, Beth J. Asch, Reserve Participation and Cost Under a New 
Approach to Reserve Compensation: Research in Support of the 11th Quadrennial Review of 
Military Compensation, RAND Corporation, MG-1153-OSD, 2012. 

OSD—DRM Extensions 

These two reports were devoted to efforts to extend the capability of the DRM. The first and 
most significant report (Asch, Mattock, and Hosek, 2013) is an extension to the DRM that 
permits the analysis of the transition from one steady state to a new steady state, recognizing that 
policy interventions often have differing effects on different cohorts and that it might take up to 
three to four decades until all members have spent their entire careers under the new policy. The 
second report (Mattock et al., 2014) uses a simple stay-versus-leave DRM of officer retention to 
demonstrate the effects of different compensation policies and also includes the complete source 
code for a Microsoft Excel implementation of the DRM that can be used to replicate the results 
in the report. 
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Management Policies Over Time: Extending the Dynamic Retention Model, RAND 
Corporation, RR-113-OSD, 2013. 
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OSD—Other  

These two papers used previously estimated DRMs to explore policy options. The first, 
Mattock, Hosek, and Asch (2016), used the transition model first introduced in Asch, Mattock, 
and Hosek (2013) (see heading “OSD—DRM Extensions”) to (1) examine alternative voluntary 
separation incentives for efficiently drawing down the force, (2) calculate optimal incentive pays, 
and (3) allow for anticipation that the incentive pays would be offered. The second, Rennane et 
al. (2022) evaluated using the value of a lost military career as calculated by taking the 
difference of the DRM value functions (the value of staying minus the value of leaving) to 
compensate disabled veterans with a military career–ending disability. This use of the value 
functions to calculate the value of a lost military career was first done in support of DoD’s 
review of military compensation and is documented in Asch, Hosek, and Mattock (2014) (see 
under heading “OSD—Military Retirement Reform”). 
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Michael Dworsky, and Jonas Kempf, U.S. Department of Defense Disability Compensation 
Under a Fitness-for-Duty Evaluation Approach, RAND Corporation, RR-A1154-1, 2022.  

Studies for the Department of the Army 

The thread of research for the Army started with an examination of the effect of making the 
reserve component retirement system more like the active component retirement system 
(Mattock, Asch, and Hosek, 2014) and then branched out to examine possible alternative (that is, 
service-specific) retirement accrual charges that would take into account the differing retention 
patterns between officers and enlisted and among the services in Hosek, Asch, and Mattock 
(2017). Asch, Mattock, and Hosek (2019) extended the Army DRM to separately model the U.S. 
Army Reserve and the Army National Guard; previously, the reserve component had been 
treated as a single composite. The model was used to evaluate the retention effect of the BRS on 
the Army Reserve. Asch et al. (2021) used DRMs estimated at the individual military occupation 
specialty level to evaluate the effectiveness of alternative SRB policies in retaining those 
members with higher innate ability. Finally, Calkins et al. (2023) modeled the retention of Army 
aviators (both commissioned officers and warrant officers) and used the model to evaluate 
alternative incentive pays based on reaching career milestones. Similar to the earlier work on 
SRBs, Calkins et al. (2023) examined the effect of alternative incentive pays in retaining 
individuals with higher ability. 
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Aviation Special and Incentive Pay Policies to Promote Performance, Manage Talent, and 
Sustain Retention, RAND Corporation, RR-A2234-1, 2023. 
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Mattock, Michael G., Beth J. Asch, and James Hosek, Making the Reserve Retirement System 
Similar to the Active System: Retention and Cost Estimates, RAND Corporation, RR-530-A, 
2014. 

Studies for the Department of the Air Force 

The need to study Air Force pilot compensation and retention drove the initial RAND work 
that used the DRM to model multi-year contracts. Mattock and Arkes (2007) used a Gotz and 
McCall (1984) style stay-versus-leave model to examine multi-year contracts for Air Force 
pilots. Mattock et al. (2016) marked a substantial improvement over the initial model, including 
the reserve component in the analysis and allowing for the choice among contracts to be subject 
to uncertainty. Robbert et al. (2018) used the DRM to model the retention for two supplemental 
career tracks, either a warrant officer track or an aviation technical track for commissioned 
officers. Mattock et al. (2019) looked at whether retaining more Air Force pilots was more cost-
effective than accessing and training additional pilots. Mattock and Asch (2019) used the DRM 
to assess the efficiency of a novel pay proposal by the Air Force relative to the existing aviation 
bonus program. Tong, Mattock, and Asch (2021) and Tong et al. (2020) estimated a set of DRMs 
for selected career enlisted aviator occupations and assessed the trade-off between accessing or 
retaining more career enlisted aviators via S&I pays. Most recently Robbert, Tong, and Hardison 
(2022) used the DRM to examine how the retention behavior of enlisted maintenance, logistics, 
and munitions personnel might be influenced by the BRS when they reach their retention 
decision points. 
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Corporation, RR-3134-AF, 2020.  

DoD Civilians—Studies for OSD 
RAND work applying the DRM to DoD civil service personnel started with Asch, Mattock, 

and Hosek (2014), which features a stay-versus-leave model estimated on a single cohort. The 
authors applied the model to examine the impact of pay freezes and unpaid furloughs. Knapp, 
Asch, et al. (2016) expanded the model to multiple cohorts and to consider the behavior of 
veterans compared with nonveterans, and Asch et al. (2016) used the estimated model to 
examine the use of voluntary separation incentive programs versus involuntary separations. Most 
recently, Mattock et al. (2022) used a DRM estimated on DoD civilian cyber workers to examine 
retention responsiveness to enhanced training opportunities. 
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Public School Teachers and State Employees 
RAND’s initial foray into studying public school teacher retention was with the Chicago 

Public Schools in Knapp, Brown, et al. (2016). Knapp et al. (2018) explores the potential effect 
of a voluntary retirement incentive on Chicago Public School teacher retention. Knapp, Asch, 
and Mattock (2021) extends the DRM to state employees in addition to teachers in South 
Carolina. Asch, Knapp, and Mattock (2022) estimates the same DRM on teachers from three 
states with substantially different retirement plans and finds that the model works well in 
modeling each state, even though the retention profiles differ from state to state. Knapp et al. 
(2022) and Hosek et al. (2023) are two recent journal publications documenting RAND research 
on the Chicago Public School voluntary retirement incentive plan. 
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Abbreviations 

ACOL Annualized Cost of Leaving (model) 

ADSO active-duty service obligation 

AvB aviation bonus 

BFGS Broyden-Fletcher-Goldfarb-Shanno (algorithm) 

BRS Blended Retirement System 

DACMC Defense Advisory Committee on Military Compensation 

DMDC Defense Manpower Data Center 

DoD Department of Defense 

DRM dynamic retention model 

EM expectation-maximization 

GEM Generalized Expectation Maximization 

IT information technology 

QRMC Quadrennial Review of Military Compensation 

RMC regular military compensation 

ROTC Reserve Officer Training Corps 

S&I special and incentive 

SD standard deviation 

SRB selective retention bonus 

TIG time-in-grade 

TIS time-in-service 

WEX Work Experience File 

YOS year(s) of service 
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