

Cover design by the Office of Secretary of Defense, Graphics and Presentations Division

This report is a product of the Defense Innovation Board (DIB). The DIB is a Federal
Advisory Committee established to provide independent advice to the Secretary of

Defense. Statements, opinions, conclusions, and recommendations in this report do not
necessarily represent the official position of the Department of Defense.

Software Is Never Done:
Refactoring the Acquisition Code for

Competitive Advantage

Defense Innovation Board, 3 May 2019

J. Michael McQuade and Richard M. Murray (co-chairs)
Gilman Louie, Milo Medin, Jennifer Pahlka, Trae' Stephens

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

Cleared for Open Publication March 26, 2019.

BarnoCE
New Stamp

MEMORANDUM TO THE CHAIRMAN, DEFENSE INNOVATION BOARD

SUBJECT: Final Report of the Defense Innovation Board (DIB) Software Acquisition and

Practices (SW AP) Study

Attached is the final report from the D 1B 's SW AP study, documenting our efforts,

analysis and conclusions working with Congress and DoD on how to develop, procure, assure,

deploy, and continuously improve software for use in the Department. In developing this report

over the past eighteen months, we have had substantial conversations with congressional staffers,

DoD leadership at many levels, program offices, contractors, (government and private sector)

software developers, and a variety of other representatives from government, industry, academia,

and the public. There is broad consensus on the goal of delivering high quality software to DoD

users in a manner that is timely, secure, and cost effective. Our study details the external and

self-inflicted barriers DoD faces in implementing modern software practices and lays out steps to

address current gaps. We hope that our recommendations will serve as a basis for the

implementation phase of this work. We are happy and ready to support that effort.

We would like to thank the study members, Gilman Louie, Milo Medin, Jennifer Pahlka

and Trae' Stephens for their contributions to the report. Bess Dopkeen served as the initial study

director and established an outstanding structure for the study and the support staff. Jeff Boleng

supported the study throughout its initial phase and stepped in as study director after Bess. We

would also like to acknowledge the outstanding help provided by Courtney Barno, Kevin

Garrison, Nick Guertin, Devon Hardy, Sandra O'Dea, Forrest Shull, and Craig Ulsh. A longer

list of the many people who have helped on the study is included in the Acknowledgements

section of the main report and in Appendix J.

J. Michael McQuade
J_j t_�
Richard M. Murray

BarnoCE
New Stamp

SWAP Study Final Release, 3 May 2019 i

Software Is Never Done:
Refactoring the Acquisition Code for Competitive Advantage

Defense Innovation Board, 3 May 2019

J. Michael McQuade and Richard M. Murray (co-chairs)
Gilman Louie, Milo Medin, Jennifer Pahlka, Trae' Stephens

Extended Abstract

U.S. national security increasingly relies on software to execute missions, integrate and collabo-
rate with allies, and manage the defense enterprise. The ability to develop, procure, assure, de-
ploy, and continuously improve software is thus central to national defense. At the same time, the
threats that the United States faces are changing at an ever-increasing pace, and the Department
of Defense’s (DoD’s) ability to adapt and respond is now determined by its ability to develop and
deploy software to the field rapidly. The current approach to software development is broken and
is a leading source of risk to DoD: it takes too long, is too expensive, and exposes warfighters to
unacceptable risk by delaying their access to tools they need to ensure mission success. Instead,
software should enable a more effective joint force, strengthen our ability to work with allies, and
improve the business processes of the DoD enterprise.

Countless past studies have recognized the deficiencies in software acquisition and practices
within DoD, but little seems to be changing. Rather than simply reprint the 1987 Defense Science
Board (DSB) study on military software that pretty much said it all, the Defense Innovation Board’s
(DIB’s) congressionally mandated study1 on Software Acquisition and Practices (SWAP) has
taken a different approach. By engaging Congress, DoD, Federally Funded Research and Devel-
opment Centers (FFRDCs), contractors, and the public in an active and iterative conversation
about how DoD can take advantage of the strength of the U.S. commercial software ecosystem,
we hope to move past the myriad reports and recommendations that have so far resulted in little
progress. Past experience suggests we should not anticipate that this report will miraculously
result in solutions to every obstacle we have found, but we hope that the two-year conversation
around it will provide the impetus for figuring out how to make the changes for which everyone is
clamoring.

In this report, we emphasize three fundamental themes:

1. Speed and cycle time are the most important metrics for managing software. To main-
tain advantage, DoD needs to procure, deploy, and update software that works for its users
at the speed of mission need, executing more quickly than our adversaries. Statutes, regula-
tions, and cultural norms that get in the way of deploying software to the field quickly weaken
our national security and expose our nation to risk.

2. Software is made by people and for people, so digital talent matters. DoD’s current per-
sonnel processes and culture will not allow its military and civilian software capabilities to grow
nearly fast or deep enough to meet its mission needs. New mechanisms are needed for at-
tracting, educating, retaining, and promoting digital talent and for supporting the workforce to
follow modern practices, including developing software hand in hand with users.

1 2018 National Defense Authorization Act (NDAA), Sec. 872. Defense Innovation Board analysis of soft-
ware acquisition regulations.

https://www.congress.gov/115/plaws/publ91/PLAW-115publ91.pdf

SWAP Study Final Release, 3 May 2019 ii

3. Software is different than hardware (and not all software is the same). Hardware can be
developed, procured, and maintained in a linear fashion. Software is an enduring capability
that must be supported and continuously improved throughout its life cycle. DoD must stream-
line its acquisition process and transform its culture to enable effective delivery and oversight
of multiple types of software-enabled systems, at scale, and at the speed of relevance.

To take advantage of the power of software, we advocate four main lines of effort:

A. Congress and DoD should refactor statutes, regulations, and processes for software,
enabling rapid deployment and continuous improvement of software to the field and providing
increased insight to reduce the risk of slow, costly, and overgrown programs.

B. The Office of the Secretary of Defense (OSD) and the Services should create and main-
tain cross-program/cross-Service digital infrastructure that enables rapid deployment,
scaling, testing, and optimization of software as an enduring capability; manage them using
modern development methods; and eliminate the existing hardware-centric regulations and
other barriers.

C. The Services and OSD will need to create new paths for digital talent (especially internal
talent) by establishing software development as a high-visibility, high-priority career track and
increasing the level of understanding of modern software within the acquisition workforce.

D. DoD and industry must change the practice of how software is procured and developed
by adopting modern software development approaches, prioritizing speed as the critical met-
ric, ensuring cybersecurity is an integrated element of the entire software life cycle, and pur-
chasing existing commercial software whenever possible.

Report structure. The main report provides an assessment of the current and desired states for
software acquisition and practices, as well as a review of previous reports and an assessment of
why little has changed in the way DoD acquires software, with emphasis on three fundamental
themes. The report’s recommen-
dations are broken into four lines
of effort, with a set of primary rec-
ommendations provided for each
(bold), along with additional rec-
ommendations that can provide
further improvements. Each rec-
ommendation is accompanied by
a draft implementation plan and
potential legislative language.

SWAP Study Final Release, 3 May 2019 iii

Table of Contents

Chapter 0. README (Executive Summary) v

Recommendations Cheat Sheet xiv

Chapter 1. Who Cares: Why Does Software Matter for DoD? 1
● Where Are We Coming From, Where Are We Going?
● Weapons and Software and Systems, Oh My! A Taxonomy for DoD
● What Kind of Software Practices Will We Have to Enable?
● What Challenges Do We Face (and Consequences of Inaction)?

Chapter 2. What Does It Look Like to Do Software Right? 9
● How It Works in Industry (and Can/Should Work in DoD): DevSecOps
● Empowering the Workforce: Building Talent Inside and Out
● Getting It Right: Better Oversight AND Superior National Security
● Eye on the Prize: What Is the R&D Strategy for Our Investment?

Chapter 3. Been There, Done Said That: Why Hasn’t This Already Happened? 18
● 37 Years of Prior Reports on DoD Software
● Breaking the Spell: Why Nothing Happened Before, but Why This Time Could Be Different
● Consequences of Inaction: Increasing Our Attack Surface/Shifting Risk to the Warfighter

Chapter 4. How Do We Get There from Here: Three Paths for Moving Forward 29
● Path 1: Make the Best of What We’ve Got
● Path 2: Tune the Defense Acquisition System to Optimize for Software
● Path 3: A New Acquisition Pathway/Appropriations Category to Force Change in the Middle

Chapter 5. What Would the DIB Do: Our Recommendations for Congress and DoD 35
● The Ten Most Important Things To Do (Starting Now!)
● The Next Most Important Things to Tackle
● Monitoring and Oversight of the Implementation Plan
● Kicking the Can Down the Road: Things That We Could Not Figure Out How to Fix

Acknowledgments 48

Vignettes 50
● Implementing Continuous Delivery: The JIDO Approach
● F22: DevOps on a Hardware Platform
● Making It Hard to Help: A Self-Denial of Service Attack for the SWAP Study
● DDS: Fighting the Hiring Process Instead of Our Adversaries
● Kessel Run: The Future of Defense Acquisitions Is #AgileAF
● JMS: Seven Signs Your Software (Program) Is in Trouble

https://drive.google.com/a/innovate.mil/open?id=18cXZXl-94BwkJYAl_sNKHsTnRYmRAx_CdcYOPBxLh0k
https://drive.google.com/a/innovate.mil/open?id=18cXZXl-94BwkJYAl_sNKHsTnRYmRAx_CdcYOPBxLh0k
https://drive.google.com/a/innovate.mil/open?id=1LCyLqrsxrr_3_uIf1uMxpsrBIjg6DK0n37ZNmYKWYcs
https://drive.google.com/a/innovate.mil/open?id=1LCyLqrsxrr_3_uIf1uMxpsrBIjg6DK0n37ZNmYKWYcs
https://docs.google.com/document/d/1IwjWj5wnBQWeH1GUHiwYY8bqYYRYN6fLUD3UoTO6DUs/edit
https://docs.google.com/document/d/1IwjWj5wnBQWeH1GUHiwYY8bqYYRYN6fLUD3UoTO6DUs/edit

SWAP Study Final Release, 3 May 2019 iv

Supporting Information

Appendix A. Draft Implementation Plan S1
● Background, Desired State, Congressional Role
● List of Actions, Related Recommendations, Previous Recommendations

Appendix B. Legislative Opportunities in Response to 2016 NDAA Section 805 S58

Appendix C. An Alternative to P- and R-Forms: How to Track Software Programs S64

Appendix D. Frequently Asked Questions (FAQs) S71

Appendix E. DIB Guides for Software S75
● Ten Commandments of Software
● Metrics for Software Development
● Do’s and Don’ts for Software
● Detecting Agile BS
● Is Your Development Environment Holding You Back?
● Is Your Compute Environment Holding You Back?
● Site Visit Observations and Recommendations
● How to Justify Your Budget When Doing DevSecOps

Appendix F. SWAP Working Group Reports (DIB remix) S130
● Acquisition Strategy
● Appropriations
● Contracts
● Data and Metrics
● Infrastructure

● Requirements
● Security Certification/Accreditation
● Sustainment and Modernization
● Test and Evaluation
● Workforce

Appendix G. Analysis the Old-Fashioned Way: A Look at Past DoD SW Projects S162
● Software Development Project Analyses
● Software Development Data Analyses

Appendix H. Replacing Augmenting CAPE with AI/ML S178
● Software Life-Cycle Prediction Model
● Software Development Forecasting Model
● Investigation of Opportunities for Analytic Intervention

Appendix I. Acronyms and Glossary of Terms S190

Appendix J. Study Information S198

● SWAP Study Membership/SWAP Working Group Membership
● Programs and Companies Visited/Department Meetings
● Charge from Congress
● Terms of Reference

https://drive.google.com/open?id=1CHFo2abr5IbSkVjqbFIXWDsjmBfZcTYFxBEZ3_jDUYk
https://drive.google.com/open?id=1-NuYqyV6vmZUmXLMAnW7vePOipSe2OZhdePTOjCT4HQ
https://docs.google.com/document/d/1b_Z2tfZZY8b6rCyqnDl0gQratYMv107zqH0e3YXPOWY/edit
https://drive.google.com/a/innovate.mil/open?id=1LXMYDYeqMgHxi2Iwszr6jxUfaWw5IcD30NU2nftczvc
https://drive.google.com/a/innovate.mil/open?id=1gDyf_2swVDCrO14YgHfquC4TlHiKc7h4L_HzDVefUdw
https://docs.google.com/document/d/189WffAwYQ2SbsjqoHquTNKaN9JjL3toRWCbTs_9lVgM/edit?usp=sharing
https://docs.google.com/document/d/1hjJfmBHhJRYG4X78NzRUzDo_TljkI4M3Mpo1igoArs4/edit?usp=sharing
https://docs.google.com/document/d/1uY8kRLzUVEFNJAAjU4vINtsXe4rjYTzyluyQgCINOJ4/edit#heading=h.gjdgxs
https://docs.google.com/document/d/1BRkC0z0LuDrE66go61-FXug5TK9-KzKXSSKqa9ZocyY/edit?usp=sharing
https://docs.google.com/document/d/1y0Lefzzwc1YF5TUPDPc-tQYAkRMWtd55c706QuJfDFI

SWAP Study Final Release, 3 May 2019 v

Chapter 0. README (Executive Summary)

In 2011, Marc Andreessen claimed in an op-ed for The Wall Street Journal that “Software Is Eating
the World.”2 He argued that every industry (not just those considered to be “information technol-
ogy”) would be transformed by software—bytes rather than atoms. Eight years later, it is clear he
was right.

This transformation is happening in defense, and we are not prepared for it. Software is leveling
the playing field with our rivals, eroding the advantages we have spent many decades accruing.
Software is the focal point of many important advances in national security technology, including
data analytics, artificial intelligence (AI), machine learning (ML), and autonomy. Software is ubiq-
uitous. It is part of everything the Department of Defense (DoD) does, from logistics to manage-
ment to weapon systems. U.S. national security is critically dependent on the capabilities of DoD’s
software.

DoD must be able to develop, procure, assure, deploy, and continuously improve software faster
than our adversaries. Unfortunately, DoD still treats software much like hardware, and often mis-
understands the relationship between speed and security. As a result, a large amount of DoD’s
software takes too long, costs too much, and is too brittle to be competitive in the long run. If DoD
does not take steps to modernize its software acquisition and development practices, we will no
longer have the best military in the world, no matter how much we invest or how talented and
dedicated our armed forces may be.

The good news is that there are organizations within DoD that have already acknowledged the
risks of falling further behind in software and are leveraging more modern acquisition and devel-
opment practices with notable success. The Defense Digital Service (DDS), the Defense Innova-
tion Unit (DIU), the Joint Improvised-Threat Defeat Organization (JIDO), and the Air Force’s Kes-
sel Run are examples that demonstrate that DoD has the ability to ship world-class software. The
challenge remains doing this at scale.

DoD needs to build on these foundations to create an ecosystem and standard operating proce-
dures that enable the practices of great software without requiring employees to “hack the sys-
tem.” To do that, we must address the prioritization, planning, and acquisition processes and
policies that create the worst bottlenecks for deploying capability to the field at the speed of rele-
vance. Further, we must address all the practices that not only put the U.S. Armed Forces at risk
and reduce the efficiency of DoD’s operations, but also drive away the very people who are most
needed to develop this critical capability.

Our adversaries are already doing this. China actively leverages its private industry to develop
national security software (particularly in AI), recruits top students under the age of 18 to work on
“intelligent weapons design,”3 and poaches U.S. software talent directly from the United States.
In Russia, Vladimir Putin has told students, that “artificial intelligence is the future, not only for
Russia, but for all humankind.... Whoever becomes the leader in this sphere will become the ruler

2 Marc Andreessen, “Why Software Is Eating the World,” The Wall Street Journal, August 20, 2011, 1.
3 Stephen Chen, “China’s Brightest Children Are Being Recruited to Develop AI ‘Killer Bots,’” South China
Morning Post, November 8, 2018.

https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.wsj.com/articles/SB10001424053111903480904576512250915629460
https://www.scmp.com/news/china/science/article/2172141/chinas-brightest-children-are-being-recruited-develop-ai-killer

SWAP Study Final Release, 3 May 2019 vi

of the world.”4 We can and must outcompete with software and the people who make it, not only
to maintain U.S. military superiority but also to ensure that the power that software represents is
used in accordance with American values.

What this report is about. This report summarizes the assessment of the Defense Innovation
Board’s (DIB’s) Software Acquisition and Practices (SWAP) study. Congress charged5 the DIB to
recommend changes to statutes, regulations, processes, and culture to enable the better use of
software in DoD. We took an iterative approach, mirroring the way modern software is success-
fully done, releasing a sequence of concept papers describing our preliminary observations and
insights. (The latest versions of these are included in Appendix E.) We used those papers to
encourage dialogue with a wide variety of individuals and groups to gain insights into the current
barriers to implementing modern software effectively and efficiently. This document captures key
insights from these discussions in an easy-to-read format that highlights the elements that we
consider critical for DoD’s success and serves as a starting point for continued discussions re-
quired to implement the changes that we recommend here.

This report is organized as follows:

● Extended Abstract: A two-page summary of the key takeaways from the report.

● README (this document): A more detailed executive summary of the report. (A README file
is used by the open source software community to provide essential information about a soft-
ware package.) If your boss heard about the report or read the extended abstract, thought it
was intriguing, and asked you to read the entire report and provide a short summary, cut and
paste this chapter into your reply and you should be good to go.

● Recommendations Cheat Sheet: A list of the main lines of effort and primary recommenda-
tions, so you can pretty much stop at that point—or better yet, stop after suggesting to your
boss they adopt them all.

● Chapters 1–4: Short descriptions of key areas and topics. If you attach the extended abstract
to any one of these as a preface, it should be comprehensible.

● Chapter 5: A more detailed description of the recommendations and our rationale.

● Supporting Information: To ensure that the executive summary and the main body of the
report satisfy the takeoff test6 and the staple test,7 we put most of the additional information
generated during the study into a set of appendices. These provide a wealth of examples and

4 James Vincent, “Putin Says the Nation that Leads in AI ‘will be the ruler of the world,’” The Verge, Sep-
tember 4, 2017: https://www.theverge.com/2017/9/4/16251226/russia-ai-putin-rule-the-world.
5 Section 872 of the FY18 NDAA directed the Secretary of Defense to "direct the Defense Innovation
Board to undertake a study on streamlining software development and acquisition regulations." The DIB-
SWAP members were charged to “review the acquisitions regulations applicable to, and organizational
structures within, the Department of Defense…; review ongoing software development and acquisition
programs…; produce specific and detailed recommendations…; and produce such additional recommen-
dations for legislation.” See Section 872 of the FY18 NDAA at https://www.con-
gress.gov/115/plaws/publ91/PLAW-115publ91.pdf or Appendix J of this report.
6 Reports should be short enough to read during takeoff, before the movies start and drinks are served.
7 Any report that is going to be read should be thin enough to be stapled with a regular office stapler.

https://www.theverge.com/2017/9/4/16251226/russia-ai-putin-rule-the-world
https://www.congress.gov/115/plaws/publ91/PLAW-115publ91.pdf
https://www.congress.gov/115/plaws/publ91/PLAW-115publ91.pdf

SWAP Study Final Release, 3 May 2019 vii

evidence, but we took care to put our essential arguments up front for less wonky types. Some
highlights:

○ Draft implementation (Appendix A): For each recommendation, a summary of the back-

ground, desired state, stakeholders, role of Congress, and actions to be taken.

○ Legislative language (Appendix B): In response to 2016 NDAA Section 805, template
legislative language for a new acquisition pathway and appropriation category for soft-
ware, aligned with our recommendations.

○ An alternative to P-Forms and R-Forms (Appendix C): A different mechanism for budget
submissions for software programs.

○ FAQs (frequently asked questions, Appendix D): A list of the most common questions that
we get about the study and our attempt to answer them. (Question 1: Hasn’t all of this
been recommended before? A: Yes…).

Note: If you are reading any portion of the report in paper form, a navigable version is available
at http://innovation.defense.gov/software.

Overarching themes. The rise of electronics, computing, and networking has forever trans-
formed the way we live: software is a part of almost everything with which we interact in our daily
lives, either directly through embedded computation in the objects around us or indirectly through
the use of information technology through all stages of design, development, deployment, and
operations. Our military advantage, coordination with allies and partners, operational security,
and many other aspects of DoD activities are all contingent upon our software edge, and any lack
thereof presents serious consequences. Software drives our military advantage: what makes
weapon systems sophisticated is the software, not (just) the hardware.

Commercial trends show what is possible with software, from the use of open source tools to agile
development techniques to global-scale cloud computing. Because of these changes, software
can be developed, deployed, and updated much more quickly, which means systems need to be
in place to support this speed. But modern software development requires a new set of skills and
methodologies (e.g., generalist software engineers, specialized product management, DevOps
and DevSecOps, agile development). Hence, the policies and systems surrounding software must
be transformed to support software, not Cold-War-era weapon manufacturing.

The incoming generation of military and civilian personnel began life digitally plugged-in, with an
innate reliance on software-based systems. They will demand new concepts of operations, tac-
tics, and strategies to maintain the edge they need. If DoD can refactor its acquisition processes
and transform its culture and personnel policies before it is too late, this software-savvy generation
can still set the Department on the right course.

As we studied the methods that the private sector has used to enable software to transform its
operations and considered how to best apply those practices to the defense enterprise, three
overarching themes emerged as the basis for our recommendations:

1. Speed and cycle time are the most important metrics for software.

http://innovation.defense.gov/software

SWAP Study Final Release, 3 May 2019 viii

2. Software is made by people and for people, so digital talent matters.
3. Software is different than hardware (and not all software is the same).

Speed and cycle time are the most important metrics for software. Most DoD software projects
are currently managed using “waterfall” development processes, which involve spending years
on developing requirements, taking bids and selecting contractors, and then executing programs
that must meet the listed requirements before they are “done.” This results in software that takes
so long to reach the field that it is often not well matched to the current needs of the user or tactics
of our adversaries, which have often changed significantly while the software was being written,
tested, and accepted. Being able to develop and deploy faster than our adversaries means that
we can provide more advanced capabilities, respond to our adversaries’ moves, and be more
responsive to our end users. Faster reduces risk because it demands focus on the critical func-
tionality rather than over-specification or bloated requirements. It also means we can identify trou-
ble earlier and take faster corrective action, which reduces cost, time, and risk. Faster leads to
increased reliability: the more quickly software/code is in the hands of users, the more quickly
feedback can focus on efforts to deploy greater capability. Faster gives us a tactical advantage
on the battlefield by allowing operation and response inside our adversaries’ observe–orient–
decide–act (OODA) loops. Faster is more secure. Faster is possible.

Software is made by people and for people, so digital talent matters. Current DoD human resource
policies are not conducive to attracting, retaining, and promoting digital talent. Talented software
developers and acquisition personnel with software experience are often put in jobs that do not
allow them to make use of those talents, particularly in the military where rotating job assignments
may not recognize and reward the importance of software development experience. As Steve
Jobs observed,8 one of the major differences between hardware and software is that for hardware
the “dynamic range” (ratio between the best in class and average performance) is, at most, 2:1.
But, the difference between the best software developer and an average software developer can
be 50:1, or even 100:1, and putting great developers on a team with other great developers am-
plifies this effect. Today, in DoD and the industrial base that supports it, the people with the nec-
essary skills exist, but instead of taking advantage of their skills we put them in environments
where it is difficult for them to be effective. DoD does not take advantage of already existing
military and civilian personnel expertise by offering pay bonuses, career paths that provide the
ability to stay in their specialization, or access to early promotions. Skilled software engineers and
the related specialties that are part of the overall software ecosystem need to be treated as a
special force; the United States must harness their talent for the great benefits that it can provide.

Software is different than hardware (and not all software is the same). Over the years, Congress
and DoD have established a sophisticated set of statutes, regulations, and instructions that gov-
ern the development, procurement, and sustainment of defense systems. This process evolved
in the context of the Cold War, where major powers designed and built aircraft carriers, nuclear
weapons, fighter jets, and submarines that were extremely expensive, lasted a very long time,
and required tremendous access to capital and natural resources. Software, on the other hand,

8 Steve Jobs, “Steve Jobs: The Lost Interview,” interview by Robert X. Cringely for the 1995 PBS docu-
mentary, Triumph of the Nerds, released to limited theaters in 2012, video.

SWAP Study Final Release, 3 May 2019 ix

is something that can be mastered by a ragtag bunch of teenagers with very little money—and
can be used to quickly destabilize world powers. Currently most parts of DoD develop, procure,
and manage software like hardware, assuming that it is developed based on a fixed set of speci-
fications, procured after it has been shown to comply with those specifications, “maintained” by
block upgrades, and upgraded by replaying this entire procurement process linearly. But software
development is fundamentally different than hardware development, and software should be de-
veloped, deployed, and continuously improved using much different cycle times, support infra-
structure, and maintenance strategies. Testing and validation of software is also much different
than for hardware, both in terms of the ability to automate but also in the potential vulnerabilities
found in software that is not kept up to date. Software is never “done” and must be managed as
an enduring capability that is treated differently than hardware.

Main lines of effort. DoD’s current approach to software is a major driver of cost and schedule
overruns for Major Defense Acquisition Programs (MDAPs). Congress and DoD need to come
together to fix the acquisition system for software because it is a primary source of its acquisition
headaches.

Bringing about the type of change that is required to give DoD the software capabilities it needs
is going to take a significant amount of work. While it is possible to use the current acquisition
system and DoD processes to develop, procure, assure, deploy, and continuously improve DoD
software, the statutes, regulations, processes, and culture are debilitating. The current approach
to acquisition was defined in a different era, for different purposes, and only works for software
projects through enormous effort and creativity. Congress, the Office of the Secretary of Defense
(OSD), the Armed Services, defense contractors, and the myriad government and industry organ-
izations involved in getting software out the door need to make major changes (together).

To better organize our specific recommendations, we identified broad lines of effort that bring
together different parts of the defense ecosystem as stakeholders. Here are the four main lines
of effort that we recommend they undertake:

A. (Congress and DoD) Refactor statutes, regulations, and processes for software, ena-
bling rapid deployment and continuous improvement of software to the field and providing
increased insight to reduce the risk of slow, costly, and overgrown programs. The manage-
ment and oversight of software development and acquisition must focus on different measures
and adopt a quicker cadence.

B. (OSD and the Services) Create and maintain cross-program/cross-Service digital infra-
structure that enables rapid deployment, scaling, testing, and optimization of software as an
enduring capability; manage it using modern development methods; and eliminate the existing
hardware-centric regulations and other barriers.

C. (The Services and OSD) Create new paths for digital talent (especially internal talent)
by establishing software development as a high-visibility, high-priority career track—with spe-
cialized recruiting, education, promotion, organization, incentives, and salary—and increasing
the level of understanding of modern software within the acquisition workforce.

SWAP Study Final Release, 3 May 2019 x

D. (DoD and industry) Change the practice of how software is procured and developed by
adopting modern software development approaches, prioritizing speed as the critical metric,
ensuring cyber protection is an integrated element of the entire software life cycle, and pur-
chasing existing commercial software whenever possible.

None of these can be done by a single organization within the government. They will require a
bunch of hard-working, well-meaning people to work together to craft a set of statutes, regulations,
processes, and (most importantly) a culture that recognizes the importance of software, the need
for speed and agility (theme 1), the critical role that smart people have to play in the process
(theme 2), and the impact of inefficiencies of the current approach (theme 3). In many ways this
mission is as challenging as any combat mission: while participants’ lives may not be directly at
risk in defining, implementing, and communicating the needed changes to policy and culture, the
lives of those who defend our nation ultimately depend on DoD’s ability to redefine its approach
to delivering combat-critical software to the field.

Refactor statutes, regulations, and processes, streamlined for software. Congress has created
many workarounds to allow DoD to be agile in its development of new weapon systems, and DoD
has used many of these to good effect. But the default statutes, regulations, and processes that
are used for software too often rely on the traditional hardware mentality (repeat: software is dif-
ferent than hardware), and those practices do not take advantage of what is possible (or, frankly,
necessary, given the threat environment) with modern software. We think that a combination of
top-down and bottom-up pressure can break us out of the current state of affairs, and creating a
new acquisition pathway that is tuned for software (of various types) will make a big difference.
To this end, Congress and DoD should prototype and, after proving success, create mechanisms
for ideation, appropriation, and deployment of software-driven solutions that take advantage of
the unique features of software (versus hardware) development (start small, iterate quickly, ter-
minate early) and provide purpose-fit methods of oversight. As an important aside, note that
throughout this study our recommendations adhere to this guiding axiom—start small, iterate
quickly—the same axiom that characterizes the best of modern software innovation cycles (see
the “DIB Ten Commandments of Software” in Appendix E for more information about the DIB’s
guiding principles for software acquisition).

Create and maintain cross-program/cross-Service digital infrastructure. Current practice in DoD
programs is that each individual program builds its own infrastructure for computing, development,
testing, and deployment, and there is little ability to build richer development and testing capabil-
ities that are possible by making use of common infrastructure. Instead, we need to create, scale,
and optimize an enterprise-level architecture and supporting infrastructure that enables creation
and initial fielding of software within six months and continuous delivery of improvements on a
three-month cycle. This “digital infrastructure,” common in commercial IT, is critical to enable rapid
deployment at the speed (and scale) of relevance. In order to implement this recommendation,
Congress and DoD leadership must figure out ways to incentivize the Services and defense con-
tractors to build on a common set of tools (instead of inventing their own) without just requiring
that everyone uses one DoD-wide (or even Service-wide) platform. Similarly, OSD will have to
define non-exceptions-based alternatives to (or at least pathways through) Joint Capabilities In-
tegration and Development System (JCIDS), Planning, Programing, Budget and Execution

SWAP Study Final Release, 3 May 2019 xi

(PPB&E), and Defense Federal Acquisition Regulation Supplement (DFARS)9 that are optimized
for software. The Director, Operational Test and Evaluation (DOT&E) will need new methods for
OT&E that match the software’s speed of relevance, and Cost Assessment and Program Evalu-
ation (CAPE) will have to capture better data and leverage AI/ML as a tool for cost assessment
and performance evaluation. Finally, the Services will need to identify, champion, and measure
platform-based, software-intensive projects that increase software effectiveness, simplify inter-
connectivity among allies, and reform business practices. Subsequent chapters in our report pro-
vide specific recommendations on each of these areas.

Create new paths for digital talent (especially internal talent). The biggest enabler for great soft-
ware is providing great people with the means to contribute to the national security mission. While
the previous recommendations speak to providing the tools and infrastructure DoD technologists
need to succeed, it is equally important that the Department’s human capital strategies allow them
to even do this work consistently in the first place. Driving the cultural transformation to support
modern, cloud-based technology requires new types of skills and competencies, changing ratios
of program managers to software engineers, moving from waterfall development to DevSecOps10
development, and dealing with all of the change management that comes with it. This is not an
easy task, but arguably one of the most important. While compensation is a major driver in at-
tracting competitive talent, DoD must also make changes in the roles, methodologies, cultures,
and other aspects of the transformation that industry is already undergoing and that the govern-
ment must undergo as well.

Increasing developer talent is not the only workforce challenge. DoD must also change how the
government manages its programs and contractors, which goes beyond just moving to
DevSecOps development. The government must have experts well steeped in the software de-
velopment process and architecture design to adequately manage both organic activities and
contracted programs. They must have the skills to detect when contractors are going down the
wrong path, choosing a bad implementation approach, or otherwise wasting government re-
sources. This is perhaps the best argument for ensuring we have software development experi-
ence natively in the government, rather than relying primarily on external vendors; unless there
are software-knowledgeable members on the core team, it is impossible to effectively monitor and
manage outsourced projects. This is especially true with the movement to DevSecOps.

In implementing this change in the workforce, it is particularly important to provide new career
paths for digital talent and enable the infrastructure and environment required to allow them to
succeed. The current General Schedule (GS) system favors time in grade over talent. This simply
will not work for software. The military promotion system has the same problem. As with sports,
great teams make a huge difference and, in software, we need to make sure those teams have
the tools they need to succeed and reward them appropriately—through recognition, opportunities
for impact, career advancement, and pay. Advanced expertise in procurement, project manage-
ment, evaluation and testing, and risk mitigation strategies will also be needed to create the types
of elite teams that are necessary. A key element of success is finding ways to keep talented

9 Common DoD acronyms are defined in Appendix I (Acronyms and Glossary).
10 An iterative software development methodology that combines development, security, and operations
as key elements in delivering useful capability to the user of the software. See Section 2.1 for details.

SWAP Study Final Release, 3 May 2019 xii

people in their roles (rather than transferring them out because it is the end of their assignment),
and promoting people based on their abilities, not based on their years of service.

Change the practice of how software is procured and developed. The items above are where we
think Congress and the Department should focus in terms of statutory, regulatory, and process
changes. But a major element is also the need to change the culture around software within Con-
gress, DoD, and the defense industrial base. We use the term “DevSecOps” as our label for the
type of culture that is needed: iterative development that deploys secure applications and software
into operations in a continuing (and continuous) fashion.

Numerous projects and groups have demonstrated the ability to implement DevSecOps within the
existing acquisition system. But the organizations we previously mentioned—DDS, JIDO, DIU,
and Kessel Run—are the exception rather than the rule, and the amount of effort required to
initiate and sustain their activities is enormous. Instead, DoD should make legacy programs that
use outdated techniques for developing software fight for existence (and in most cases replace
them with new activities that embrace a DevSecOps approach).

Getting started now. The types of changes we are talking about will take years to bring to com-
plete fruition. But it would be a mistake to spend two years figuring out what the answer should
look like, spend another two years prototyping the solutions to make sure we are right, and then
spend two to four more years implementing the changes in statutes, regulations, processes, and
culture that are actually required. Let’s call that approach the “hardware” approach. Software is
different than hardware, and therefore the approach to implementing change for software should
be different as well.

Indeed, most (if not all) of the changes we are recommending are not new and not impossible to
make. The 1987 DSB Task Force on Military Software,11 chaired by legendary computer scientist
Fred Brooks, wrote an outstanding report that already articulated much of what we are saying
here. And the software industry has already implemented and demonstrated the utility of the types
of changes we envision. The problem appears to be in getting the military enterprise to adopt a
software mindset and implement a DevSecOps approach in a system that was intended to make
sure that things would not move too quickly.

DoD could address many of our issues by adopting existing best practices of the private sector
for agile development, including making use of software as a service; taking advantage of modern
(cloud) infrastructure, tools, computing, and shared libraries; and employing modern software lo-
gistics and support delivery systems for software maintenance, development, and updating
(patching). We do not need to study these; we need to get going and implement them. Here is a
proposed timeline for implementing the primary recommendations of this report, starting now:

● (Immediately): Define, within 60 days after delivery of this report to Congress, a detailed im-
plementation plan and assign owners to begin each of the top recommendations.

11 Defense Science Board Task Force, Military Software (Washington, DC: Office of the Under Secretary
of Defense for Acquisition, September 1987), https://apps.dtic.mil/dtic/tr/fulltext/u2/a188561.pdf.

https://apps.dtic.mil/dtic/tr/fulltext/u2/a188561.pdf

SWAP Study Final Release, 3 May 2019 xiii

● FY19 (create): High-level endorsement of the vision we articulate here, and support for activ-
ities that are consistent with the desired end state (i.e., DevSecOps and enterprise-level ar-
chitecture and infrastructure). Identify and launch programs to move out on the priority rec-
ommendations (start small, iterate quickly). If you are reading this and are in a position of
leadership in your organization, pass this on to others with your seal of approval and a request
for your team to develop two or three plans of action for how it can be applied in your domain.
If someone comes to you with a proposal that aligns with the objectives we have outlined
here, find a way to be on the front line of changing DoD to a “culture of yes.”

● FY20 (deploy): Initial deployment of authorities, budgets, and processes for software acquisi-
tion and practices reform. Execute representative programs according to the lines of effort
and recommendations in this report, implement now, measure results, and modify ap-
proaches. Implement this report in the way we implement modern software.

● FY21 (scale): Streamlined authorities, budgets, and processes enabling software acquisition
and practices reform at scale. In this time frame, we need a new methodology to estimate as
well as determine the value of software capability delivered (and not based on lines of code).

● FY22 (optimize): Conditions established so that all DoD software development projects tran-
sition (by choice) to software- enabled processes, with the talent and ecosystem in place for
effective management and insight.

In the remainder of this report, we provide a rationale for the approach that we are advocating.
Chapter 1 makes the case for why software is important to DoD, including a taxonomy of the
different types of software that need to be considered (not all software is the same). In Chapter 2,
we describe how software is developed in the private sector and what is required in terms of
workforce, infrastructure, and culture. Chapter 3 is an attempt to summarize what has already
been said by other studies and groups, why the situation has not changed, and how we think this
study can potentially lead to a different outcome. Chapters 4 and 5 contain our recommendations
for how to move forward. In Chapter 4, we present three alternative paths to consider: doing the
best we can with the current system; streamlining statutes, regulations, and processes so that
they are optimized for software (instead of hardware); and making more radical changes that
create entirely new appropriation categories and acquisition pathways. Finally, Chapter 5 de-
scribes the path that we recommend be taken, broken out along the lines of effort described
above, and with a set of 10 primary recommendations followed by 16 additional recommendations
(a detailed draft implementation plan for implementing each is included in Appendix A).

A two-page summary (“cheat sheet”) of the lines of effort and recommendations follows.

SWAP Study Final Release, 3 May 2019 xiv

DIB SWAP Study
Recommendations “Cheat Sheet”

This sheet contains a list of the recommendations from the Defense Innovation Board’s (DIB’s)
Software Acquisition and Practices (SWAP) study. The recommendations below include input
from the following sources:

● DIB Guides for Software (Appendix E)
● SWAP working group reports (Appendix F)
● Previous software acquisition reform studies (starting with the 1987 DSB study)

The recommendations are organized according to four major lines of effort and each recommen-
dation contains background information, a proposed owner for implementing the recommenda-
tion, as well as a more detailed draft implementation plan, a list of other offices that are affected,
and additional details. The following diagram documents this structure:

For each recommendation, a draft implementation plan can be found in Appendix A that gives
more detail on the rationale, supporting information, similar recommendations, specific action
items, and notes on implementation. Potential legislative language to implement selected recom-
mendations is included in Appendix B.

SWAP Study Final Release, 3 May 2019 xv

The Ten Most Important Things to Do (Starting Now!)

Line of Effort A (Congress and OSD): Refactor statutes, regulations, and processes for
software
A1 Establish one or more new acquisition pathways for software that prioritize continuous inte-

gration and delivery of working software in a secure manner, with continuous oversight
from automated analytics

A2 Create a new appropriation category for software capability delivery that allows (relevant
types of) software to be funded as a single budget item, with no separation between
RDT&E, production, and sustainment

Line of Effort B (OSD and Services): Create and maintain cross-program/cross-Service
digital infrastructure
B1 Establish and maintain digital infrastructure within each Service or Agency that enables rapid

deployment of secure software to the field, and incentivize its use by contractors
B2 Create, implement, support, and use fully automatable approaches to testing and evaluation

(T&E), including security, that allow high-confidence distribution of software to the field on
an iterative basis

B3 Create a mechanism for Authorization to Operate (ATO) reciprocity within and between pro-
grams, Services, and other DoD agencies to enable sharing of software platforms, compo-
nents, and infrastructure and rapid integration of capabilities across (hardware) platforms,
(weapon) systems, and Services

Line of Effort C (Services and OSD): Create new paths for digital talent (especially internal
talent)
C1 Create software development units in each Service consisting of military and civilian person-

nel who develop and deploy software to the field using DevSecOps practices
C2 Expand the use of (specialized) training programs for CIOs, SAEs, PEOs, and PMs that

provide (hands-on) insight into modern software development (e.g., Agile, DevOps,
DevSecOps) and the authorities available to enable rapid acquisition of software

Line of Effort D (DoD and industry): Change the practice of how software is procured and
developed
D1 Require access to source code, software frameworks, and development toolchains—with

appropriate IP rights—for DoD-specific code, enabling full security testing and rebuilding of
binaries from source

D2 Make security a first-order consideration for all software-intensive systems, recognizing
that security-at-the-perimeter is not enough

D3 Shift from the use of rigid lists of requirements for software programs to a list of desired
features and required interfaces/characteristics to avoid requirements creep, overly ambi-
tious requirements, and program delays

Chapter 5 provides additional context and Appendix A contains draft implementation plans.

SWAP Study Final Release, 3 May 2019 1

Chapter 1. Who Cares: Why Does Software Matter for DoD?

The future battlespace is constructed of not only ships, tanks, missiles, and satellites, but also
algorithms, networks, and sensor grids. Like no other time in history, future wars will be fought on

civilian and military infrastructures of satellite systems, electric power grids, communications
networks, and transportation systems, and within human networks. Both of these battlefields—

electronic and human—are susceptible to manipulation by adversary algorithms.

— Cortney Weinbaum and Lt Gen John N.T. “Jack” Shanahan, “Intelligence in a Data-Driven
Age,” (Joint Force Quarterly 90, 2018), 5

This chapter provides a high-level vision of why software is critical for national security and the
types of software we will have to build in the future. We also provide a description of different
types of software, where they are used, and why a one-size-fits-all approach will not work.

1.1 Where Are We Coming From, Where Are We Going?

While software development has always been a challenge for the Department of Defense (DoD),
today these challenges greatly affect our ability to deploy and maintain mission-critical systems
to meet current and future threats. In the past, software simply served as an enabler of hardware
systems and weapons platforms. Today, software defines our mission-critical capabilities and our
ability to sense, share, integrate, coordinate, and act.

Software is everywhere and is in almost everything that the Department operates and uses.
Software drives our weapon systems; command, control, and communications systems;
intelligence systems; logistics; and infrastructure, and it drives much of the backroom enterprise
processes that make the Department function. If cyber is the new domain in which we are fighting,
then our ability to maintain situational awareness and our ability to fight, defend, and counter
threats will be based on the capabilities of our software. In this new domain, software is both an
enabler as well as a target of the fight.

As our military systems become increasingly networked and automated, as autonomy becomes
more prevalent, and as we become more dependent on machine learning (ML) and artificial
intelligence (AI), our ability to maintain superiority will be directly linked to our ability to field and
maintain software that is better, smarter, and more capable than our adversaries’ software. Even
our ability to defend against new physical and kinetic threats such as hypersonics, energetics,
and biological weapons will be based on software capabilities. We need to identify and respond
to these new threats as they happen in near real time. Our ability to identify and respond to these
new threats will be based on our ability to develop and push new software-defined capabilities to
meet those threats on time scales that greatly outpace our adversaries’ ability to do so.

The need to meet future threats requires us to rethink how we develop, procure, assure, deploy,
and continuously improve software. DoD’s current procurement processes treat software
programs like hardware programs, but DoD can no longer take years to develop software for its
major systems. Software cannot be an afterthought to hardware, and it cannot be acquired,
developed, and managed like hardware. DoD’s acquisition and development approaches are
increasingly antiquated and do not meet the timely demands of its missions. Fixing the

https://ndupress.ndu.edu/Portals/68/Documents/jfq/jfq-90/jfq-90_4-9_Weinbaum-Shanahan.pdf?ver=2018-04-11-125441-307
https://ndupress.ndu.edu/Portals/68/Documents/jfq/jfq-90/jfq-90_4-9_Weinbaum-Shanahan.pdf?ver=2018-04-11-125441-307

SWAP Study Final Release, 3 May 2019 2

Department’s software approach involves more than just making sure that we get control over
cost and budget; it concerns our ability to maintain our fighting readiness and our ability to win
the fight and counter any threat regardless of domain and regardless of adversary.

1.2 Weapons and Software and Systems, Oh My! A Taxonomy for DoD

Not all software systems are the same, and therefore it is important to optimize development
processes and oversight mechanisms to the different types of software DoD uses. We distinguish
here between two different aspects of software: operational function (use) and implementation
platform. To a large extent, a given operational function can be implemented on many different
computational platforms depending on whether it is a mission support function (where high-
bandwidth connectivity to the cloud is highly likely) or a field-forward software application (where
connectivity many be compromised and/or undesirable).

We define three broad operational categories:

● Enterprise systems: very large-scale software
systems intended to manage a large collection
of users, interface with many other systems, and
generally used at the DoD level or equivalent.
These systems should always run in the cloud
and should use architectures that allow
interoperability, expandability, and reliability. In
most cases the software should be commercial
software purchased (or licensed) without
modification to the underlying code, but with
DoD-specific configuration. Examples include e-
mail systems, accounting systems, travel
systems, and human resources (HR) databases.

● Business systems: essentially the same as enterprise systems, but operating at a slightly
smaller scale (e.g., for one of the Services). Like enterprise systems, they are interoperable,
expandable, reliable, and probably based on commercial offerings. Similar functions may be
customized differently by individual Services, though they should all interoperate with DoD-
wide enterprise systems. Depending on their use, these systems may run in the cloud, in local
data centers, or on desktop computers. Examples include software development
environments and Service-specific HR, financial, and logistics systems.

● Combat systems: software applications that are unique to the national security space and
used as part of combat operations. Combat systems may require some level of customization
that may be unique to DoD, not the least of which will be specialized cybersecurity
considerations to enable them to continue to function during an adversarial attack. (Note that
since modern DoD enterprise and business systems depend on software, cyber attacks to
disrupt the operations of these systems have the potential to be just as crippling as those
aimed at combat systems.)

Enterprise
systems

Business
systems

Combat systems

Logistics

Mission

Weapon

Figure 1.1. Different types of software.

SWAP Study Final Release, 3 May 2019 3

We further break down combat systems into subcategories:

○ Logistics systems: any system used to keep track of materials, supplies, and transport as
part of operational use (versus Service-scale logistics systems, with which they should
interoperate). While used actively during operations, logistics systems are likely to run on
commercial hardware and operating systems, allowing them to build on commercial off-
the-shelf (COTS) technologies. Platform-based architectures enable integration of new
capabilities and functions over time (probably on a months-long or annual time scale).
Operation in the cloud or based on servers is likely.

○ Mission systems: any system used to plan and monitor ongoing operations. Similar to
logistics systems, this software will typically use commercial hardware and operating
systems and may be run in the cloud, on local services, or via a combination of the two
(including fallback modes). Even if run locally (such as in an air operations center), they
will heavily leverage cloud technologies, at least in terms of critical functions. These
systems should be able to incorporate new functionality at a rate that is set by the speed
at which the operational environment changes (days to months).

○ Weapon systems: any system capable of delivering lethal force, as well as any direct
support systems used as part of the operation of the weapon. Note that our definition
differs from the standard DoD definition1 of a weapon system, which also includes any
related equipment, materials, services, personnel, and means of delivery and deployment
(if applicable) required for self-sufficiency. The DoD definition would most likely include
the mission and logistics functions, which we find useful to break out separately. Software
on weapon systems is traditionally closely tied to hardware, but as we move toward greater
reliability of software-defined systems and distributed intelligence, weapon systems
software is becoming increasingly hardware independent (similar to operating systems for
mobile devices, which run across many different hardware platforms).

We also define several different types of computing platforms on which the operational functions
above might be implemented:

● Cloud computing: computing that is typically provided in a manner such that the specific
location of the compute hardware is not relevant (and may change over time). These systems
typically run on commercial hardware and use commercial operating systems, and the
applications running on them run even as the underlying hardware changes. The important
point here is that the hardware and operating systems are generally transparent to the
application and its users (see figure 1.2).

1 The Department of Defense, DoD Dictionary of Military and Associated Terms (Washington, DC:
Department of Defense, as of February 2019), 252.

https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/dictionary.pdf

SWAP Study Final Release, 3 May 2019 4

● Client/server computing: computing provided by a combination of hardware resources
available in a computing center (servers) as well as local computing (client). These systems
usually run on commercial hardware and use commercial operating systems.

● Desktop/laptop/computing: computing that is carried out on a single system, often by
interacting with data sources across a network. These systems usually run on commercial
hardware and use commercial operating systems.

● Mobile computing: computing that
is carried out on a mobile device,
usually connected to the network
via wireless communications.
These systems usually run on
commercial operating systems
using commodity chipsets.

● Embedded computing: computing
that is tied to a physical, often-
customized hardware platform and
that has special features that
require careful integration between
software and hardware (see figure
1.3).

A single software system may have multiple components or functions that span several of these
definitions, and components of an integrated system likely have elements that do the same. The
key point is that each type of software system has different requirements in terms of how quickly

Figure 1.2. Cloud computing environment.
[Image by Sam Johnston is licensed under CC BY-SA 3.0]

Figure 1.3. Embedded system architecture.
[Image from Ebrary.net]

https://en.wikipedia.org/wiki/Cloud_computing#/media/File:Cloud_computing.svg
https://creativecommons.org/licenses/by-sa/3.0
https://ebrary.net/22041/computer_science/typical_architecture_embedded_system

SWAP Study Final Release, 3 May 2019 5

it can/should be updated, the level of information assurance required, and the organizations that
will participate in development, testing, customization, and use of the software. Different statutes,
regulations, and processes may be required for different types of software (and these would differ
greatly from those used for hardware).

Having defined systems that deliver effects and the kinds of computing platforms on which
software is hosted, we now distinguish between four primary types of software. We use these
terms throughout the rest of the report to differentiate the acquisition and deployment approaches
needed for different types of software:

● Type A (Commercial Off-the-Shelf [COTS] applications): The first class of software
consists of applications that are available from commercial suppliers. Business processes,
financial management, HR, software development, collaboration tools, accounting software,
and other “enterprise” applications in DoD are generally not more complicated nor significantly
larger in scale than those in the private sector. Unmodified commercial software should be
deployed in nearly all circumstances. Where DoD processes are not amenable to this
approach, the Department should modify its processes, not the software.

● Type B (Customized Software): The second class of software constitutes those applications
that consist of commercially available software that is customized for DoD-specific usage.
Customization can include the use of configuration files, parameter values, or scripted
functions tailored for DoD missions. These applications generally require (ongoing)
configuration by DoD personnel, contractors, or vendors.

● Type C (COTS Hardware/Operating Systems): The third class of software applications is
those that are highly specialized for DoD operations but run on commercial hardware and
standard operating systems (e.g., Linux or Windows). These applications will generally be
able to take advantage of commercial processes for software development and deployment,
including the use of open source code and tools. This class of software includes applications
written by DoD personnel as well as those that are developed by contractors.

● Type D (Custom Software/Hardware): This class of software focuses on applications
involving real-time, mission-critical, embedded software whose design is highly coupled to its
customized hardware. Examples include primary avionics or engine control, or target tracking
in shipboard radar systems. Requirements such as safety, target discrimination, and
fundamental timing considerations demand that extensive formal analysis, test, validation,
and verification activities be carried out in virtual and “iron bird” environments before
deployment to active systems. These considerations also warrant care in the way application
programming interfaces (APIs) are potentially presented to third parties.

We note that these classes of software are closely related to those described in the 1987 Defense
Science Board (DSB) study on military software, which categorized software as “standard”
(roughly capturing types A and B), “extended” (type C), “embedded” (type D), and “advanced”
(which the study categorized as “advanced and exploratory systems,” which are not so relevant
here).

https://apps.dtic.mil/docs/citations/ADA188561
https://apps.dtic.mil/docs/citations/ADA188561

SWAP Study Final Release, 3 May 2019 6

1.3 What Kind of Software Practices Will We Have to Enable?

The competitor that can realize software-defined military capability the fastest is at an advantage
in future conflicts. We must shorten our development cycles from years to months so that we can
react and respond within the observe–orient–decide–act (OODA) loop of the threats we face.
Agile methodologies such as DevSecOps enable this rapid cycle approach (see “Detecting Agile
BS” in Appendix E for more information about agile methodologies), and in addition to
development we will need to test and validate software in real time as part of the integrated
approach that DevSecOps demands. Quality assurance must be a continuous and fully integrated
process throughout every phase of the software cycle. We need to build software pipelines that
are able to develop and deploy software and provide updates as quickly as modern-day
commercial companies so that we can respond to new threats (especially when the target will be
our software). We must treat software as a continuous service rather than as block deliverables.
It is important to have the agility in our procurement approach that will allow program managers
to change priorities based on the needs and timing of the end users.

In the near future, DoD’s acquisition and use of business systems should closely mirror industry
and the private sector. DoD should modify its processes to mimic industry’s best practices rather
than try to contract for and maintain customized software. Figure 1.4 illustrates how this looks at
Facebook (see also Section 2.1 for examples of best practices in industry).

Figure 1.4. Facebook’s continuous delivery process. Code updates that have passed a series
of automated internal tests (bottom) land in the master development branch and are pushed out
to employees (C1). In this stage, push-blocking alerts are generated if there are problems, and
an emergency stop button keeps the release from going any further. If everything is OK, changes
are pushed to 2 percent of production (C2), where signal and monitor alerts are again collected,
especially for edge cases that testing or employee use may not have picked up. Finally, changes
are rolled out to 100 percent of production (C3), where the “Flytrap” tool aggregates user reports
and provides alerts on any anomalies. The cycle time between updates can be as short as a few
hours. [Diagram and caption adapted from Facebook Engineering Blog, 31 Aug 2017 post on
“Rapid release at massive scale”]

https://code.fb.com/web/rapid-release-at-massive-scale/

SWAP Study Final Release, 3 May 2019 7

DoD should also adopt commercial logistics and mission planning software (COTS) wherever
possible and reduce its reliance on government off-the-shelf (GOTS) solutions. Good logistics
and mission software reduces process complexity, improves situational awareness, reduces
costs, and simplifies planning while improving speed of delivery and streamlining performance.

For software that is closely tied to hardware, software-defined systems should be easier to
develop, maintain, and upgrade than classic embedded systems. A well-designed system would
allow new capabilities to be delivered directly to the edges of the network from the cloud in the
same way new capabilities are delivered to consumer mobile devices.

DoD should manage software by measuring value delivered to the user rather than by monitoring
compliance with requirements. Accountability should be based on delivering value to the user and
solving user needs, not on complying with obsolete contracts or requirements documents.

Program managers must identify potential problems earlier (ideally, within months) and take
corrective action quickly. Troubled programs must fail quickly, and the Department needs to learn
from them. As we witnessed throughout our work on this study, many software programs are too
big, are too complex, and take too long to deliver any value to users. Development must be staged
and follow the best practice of smaller deliverables faster, with higher frequency of updates and
new features. Initially, program development should focus on developing the “minimum viable
product” (MVP) and getting it delivered to the customer more quickly than traditionally run
programs. (The MVP for a software program represents the first point at which the code can start
doing useful work and also at which feedback can be gathered that supports refinement of
features.)

Software developers within the defense community need the same modern tools, systems,
environments, and collaboration resources that commercial industry has adopted as standard.
Without these, the Department undermines the effectiveness of its software developer base, and
its ability to attract and retain our software human capital, both within DoD and among its
suppliers. With the introduction of new technologies like ML and AI and the ever-increasing
interdependence among networked heterogeneous systems, software complexity will continue to
increase logarithmically. DoD needs to continuously invest in new development tools and
environments including simulation environments, modeling, automated testing, and validation
tools. DoD must invest in research and development (R&D) into new technologies and
methodologies for software development to help the Department keep up with the ever-growing
complexity of defense systems.

1.4 What Challenges Do We Face (and Consequences of Inaction)?

The world is changing. The United States used to be the dominant supplier of software and the
world leader in software innovation. That is no longer the case. Due to the global digital revolution
driven by the consumer and commercial markets, countries are building their own indigenous
software capabilities and their own technology clusters. Countries like China are making huge

SWAP Study Final Release, 3 May 2019 8

investments in AI and cyber. China’s 2030 plan envisions a $1 trillion AI industry in China.2 China
wants to become a cyber superpower and is investing in its capital markets, universities, research
centers, defense industry, and commercial software companies to reach that goal.3

The potential long-term consequences of inaction are that our adversaries’ software capabilities
could catch and surpass those of the United States. If that happens, our adversaries would be
able to develop new capabilities and potentially iterate faster than we can. They could respond to
our defense systems faster than we can respond to theirs. If their algorithms and AI become
superior to ours, they could hold a decisive advantage when any of our systems go up against
any of theirs. And if their cyber capability becomes superior to ours, they could shut us down,
cause chaos, continue to steal our secrets as they choose and without repercussions—especially
if we could not attribute those attacks. Our adversaries’ software capabilities are growing rapidly.
If we do not keep pace, we could lose our defense technology advantage within a decade or much
sooner.

2 Vikram Barhat, “China Is Determined to Steal A.I. Crown from US and Nothing, Not Even a Trade War,
Will Stop It,” CNBC, May 4, 2018, https://www.cnbc.com/2018/05/04/china-aims-to-steal-us-a-i-crown-
and-not-even-trade-war-will-stop-it.html.
3 “China Is Seeking to Become a Cyber Superpower,” The Economist, March 20, 2018,
https://www.economist.com/graphic-detail/2018/03/20/china-is-seeking-to-become-a-cyber-superpower;
and Rogier Creemers, Paul Triolo, and Graham Webster, “Translation: Xi Jinping’s April 20 Speech at the
National Cybersecurity and Informatization Work Conference,” New America Blog Post, April 30, 2018,
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-xi-jinpings-april-20-speech-
national-cybersecurity-and-informatization-work-conference/.

https://www.cnbc.com/2018/05/04/china-aims-to-steal-us-a-i-crown-and-not-even-trade-war-will-stop-it.html
https://www.cnbc.com/2018/05/04/china-aims-to-steal-us-a-i-crown-and-not-even-trade-war-will-stop-it.html
https://www.economist.com/graphic-detail/2018/03/20/china-is-seeking-to-become-a-cyber-superpower
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-xi-jinpings-april-20-speech-national-cybersecurity-and-informatization-work-conference/
https://www.newamerica.org/cybersecurity-initiative/digichina/blog/translation-xi-jinpings-april-20-speech-national-cybersecurity-and-informatization-work-conference/

SWAP Study Final Release, 3 May 2019 9

Chapter 2. What Does It Look Like to Do Software Right?

Deliver performance at the speed of relevance. Success no longer goes to the country that
develops a new technology first, but rather to the one that better integrates it and adapts its way
of fighting. Current processes are not responsive to need; the Department is over-optimized for

exceptional performance at the expense of providing timely decisions, policies, and capabilities to
the warfighter. Our response will be to prioritize speed of delivery, continuous adaptation, and

frequent modular upgrades. We must not accept cumbersome approval chains, wasteful
applications of resources in uncompetitive space, or overly risk-averse thinking that impedes

change. Delivering performance means we will shed outdated management practices and
structures while integrating insights from business innovation.

— U.S. Department of Defense, “Summary of the 2018 National Defense Strategy of the United
States of America: Sharpening the American Military’s Competitive Edge,” (Washington, DC: U.S.

Department of Defense, 2018), 10

In many cases, the software acquisition approaches and practices in place within DoD today look
strange and perplexing to those familiar with commercial software practices. While the mission-,
security-, and safety-critical nature of DoD’s software in the context of embedded weapons will
have an impact on practices, the extreme degree of divergence from contemporary commercial
practice has been an area of our focus. Our case studies, site visits, and other study activities
allowed a closer look into the reasons for divergence and whether the absence of many
commercial best practices is justified.

2.1 How It Works in Industry (and Can/Should Work in DoD): DevSecOps

Modern software companies must develop
and deliver software quickly and efficiently
in order to survive in a hyper-competitive
environment. While it is difficult to
characterize the entire software sector, in
this section we outline a set of practices—
based on documented approaches in
industry4—that are representative of
commercial environments where the
delivery of software capability determines
the success or failure of the company.
These practices generally hold true in
other industries where companies have
unexpectedly found themselves in the
software business due to an increasing
reliance on software to provide their key
offerings, such as automotive, banking,
healthcare, and many others. In any

4 Fergus Henderson, “Software Engineering at Google” (arXiv:1702.01715 [cs.SE], January 31, 2017).

Figure 2.1 A former U.S. Marine Corps sergeant,
now a Microsoft field engineer, works with an IT
support specialist with the Navy as part of his job to
travel to commercial companies and military bases
across the country and train IT staff about a systems
management product. [Photo by Sgt. Shellie Hall]

https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf
https://arxiv.org/ftp/arxiv/papers/1702/1702.01715.pdf
https://www.dvidshub.net/image/4402660/learning-skills-tomorrows-workforce

SWAP Study Final Release, 3 May 2019 10

environment, software engineering practices must be matched with the recruitment and retention
of talented software expertise. These practices must be honed over time and adapted to lessons
learned.

At a high level, DoD must move from
waterfall and spiral development
methods to more modern software
development practices such as Agile,
DevOps, and DevSecOps. “DevOps”
represents the integration of software
development and software operations,
along with the tools and culture that
support rapid prototyping and
deployment, early engagement with
the end user, automation and
monitoring of software, and
psychological safety (e.g., blameless
reviews). “DevSecOps” (as depicted in
figure 2.2) adds the integration of
security at all stages of development and deployment, which is essential for DoD applications.
DoD should adopt these techniques, with appropriate tuning of approaches used by the
Agile/DevSecOps community for mission-critical, national security applications. DoD should use
open source software when possible to speed development and deployment and leverage the
work of others.

Generally, successful software companies have developed best practices in three categories:

Software development. These are software engineering practices that include source code
management, software build, code review, testing, bug tracking, release, launch, and
postmortems. Key best practices applicable to DoD software programs include the following:

● All source code is maintained in a single repository that is available to all software engineers.
There are control mechanisms to manage additions to the repository, but in some cases all
engineers are culturally encouraged to fix problems, independent of program boundaries.

● Developers are strongly encouraged to avoid “forking” source code (creating independent
development branches) and focus work on the main branch of the software development.

● Code review tools are reliable and easy to use. Changes to the main source code typically
require review by at least one other engineer, and code review discussions are open and
collaborative.

● Unit test is ubiquitous, fully automated, and integrated into the software review process.
Integration, regression, and load testing are also widely used, and these activities should be
an integrated, automated part of daily workflow.

● Releases are frequent—often weekly. There is an incremental staging process over several
days, particularly for high-traffic, high-reliability services.

Figure 2.2. Continuous integration of development,
security, and deployment (DevSecOps). [Adapted from an
image by Kharnagy, licensed under CC BY-SA 4.0]

https://www.quora.com/How-are-DevOps-and-Agile-different
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://creativecommons.org/licenses/by-sa/4.0/

SWAP Study Final Release, 3 May 2019 11

● Postmortems are conducted after system outages. The focus of the postmortem is on how to
avoid problems in the future and not on affixing blame.

Project management. Software projects must contribute to the overall aim of the business, and
efforts must be aligned to that end goal.

● Individuals and teams set goals, usually quarterly and annually. Progress against those goals
is tracked, reported, and shared across the organization. Goals are mechanisms to encourage
high performance but can be decoupled from performance appraisal or compensation.

● The project approval process is organic. Significant latitude to initiate projects is given at all
levels, with oversight responsibility given to managers and executives to allocate resources
or cancel projects.

People management. Given the scarce number of skilled software engineers, successful software
companies know how to encourage and reward good talent. Examples include the following:

● Engineering and management roles are clearly separated, with advancement paths for both.
Technical career progression (e.g., for advanced and senior developers, fellows and senior
fellows) parallels management career ladders; technical professionals receive similar
compensation and accrue comparable respect within the organization. Similar distinctions are
made between technical management and people management. The ratio of software
engineers to product managers and program managers ranges from 4:1 to 30:1.

● Mobility throughout the organization is encouraged. This allows for the spread of technology,
knowledge, and culture throughout the company.

In addition to these specific software development practices, another common approach to
managing programs in industry is to move away from the specifications and requirements
approach towards a feature management approach. This approach allows program managers to
make agile decisions based on evolving needs and capabilities. Using a feature management
approach, a program manager has a list of features and capabilities ranked by need, risk, cost,
resources, and time. This list of capabilities is two to three times larger than what generally can
be accomplished within a given time frame, a given budget, and a set of resources. Program
managers make decisions about the feature mix, match investments to needs, and balance risk
against performance. Capabilities are tested and delivered on a continuous basis, and maximum
automation is leveraged for testing.

In industry, software programs initially start as an MVP. An MVP has just enough features to meet
basic minimum functionality. It provides the foundational capabilities upon which improvements
can be made. MVPs have significantly shorter development cycles than traditional waterfall
approaches. The goal of MVPs is to get basic capabilities into users’ hands for evaluation and
feedback. Program managers use the evaluation and feedback results to rebalance and re-
prioritize the software capability portfolio.

Portfolio success is measured based on performance of the delivery of capabilities as measured
against user needs and strategic objectives within an investment cycle. Value is determined by
output measurements rather than process measurements. Portfolio value is the aggregate of the

SWAP Study Final Release, 3 May 2019 12

total value of all of the capabilities delivered divided by total cost invested within a period of time.
Blending higher risk/higher reward capabilities with lower risk/lower reward capabilities is the art
of good portfolio management. Within a given period of time, program managers use
diversification to spread risk and rewards. Good program managers identify troubled projects
early and are encouraged either to quickly correct the problems or to quickly abandon failing
efforts so that remaining resources can be husbanded and then reallocated to other priorities.

Software budgets are driven by time, talent, compute resources, development environment, and
testing capabilities required to deliver capabilities. The capability and cost of talent vary greatly
between software engineers, designers, programmers, and managers. The quality of engineering
talent is the single largest variable that determines cost, risk, and duration of a software project.
Good portfolio managers must take inventory of the range of software talent within a program and
carefully allocate that talent across the portfolio of capabilities development.

2.2 Empowering the Workforce: Building Talent Inside and Out

One of the biggest barriers to realizing the software capabilities the Department so desperately
needs is the way the Department manages the people necessary to build that capability. DoD
cannot compete and dominate in defense software without a technical and design workforce
within the Department that can both build software natively and effectively manage vendors to do
the same, using the proven principles and practices described above. Some of the Department’s
human capital practices actively work against this critical goal.

If the Department wants to be good at software, it must be good at recruiting, retaining, leveraging,
managing, and developing the people who make it. When we look at private-sector organizations
and institutions that effectively use software to fulfill their mission, they

● understand the software professionals that they have, understand their workforce needs at a
high level, and understand the gap between the two. (We say “at a high level” because we
believe the gap is large enough that it is much more important to begin closing the gap than
it is to measure the gap with too much precision.)

● have a strategy to recruit the people and skills they need to fulfill their mission, understanding
what they uniquely have to offer in a competitive market.

● clearly understand the competencies required by software professionals in their organizations
and the expectations of these professionals at each level in the organization.

● define career ladders for technical professionals that map software competencies and
expectations from entry level to senior technical leadership and management.

● offer opportunities for learning and mentorship from more senior engineering and design
leaders.

● count engineering and design leaders among their most senior leadership, with the ability to
advocate across silos for the needs of the software and software acquisition workforce and
support other senior leaders in understanding how to work with both.

SWAP Study Final Release, 3 May 2019 13

● support a cadre of leadership able and empowered to create a culture of software
management and promote common approaches, practices, platforms, and tools, while
retaining the ability to use judgement about when to deviate from those common approaches
and tools.

● reward software professionals based on merit and demonstrated contribution rather than time
in grade.

Unfortunately, these are not the common descriptors for the software workforce practices in
today’s DoD.

DoD has long recognized that medicine and law require specialized skills, continuing education,
and support and made it not only possible but desirable and rewarding to have a career as a
doctor or lawyer in the armed forces. In contrast, software developers, designers, and managers
in the Services must practice their skills intermittently and often without support as they endure
frequent rotations into other roles. DoD does not expect a trained physician to constantly rotate
into deployments focused on aviation maintenance, nor does it interrupt the training of a lawyer
to teach him or her HR skills. Who would be comfortable being treated by a physician who worked
in an institution that lacked common standards of care and provided no continuing education?
And though software is often a matter of life and death, DoD’s current human capital practices
include all of these counterproductive features.

The process to retool human capital
practices to meet the challenge of
software competency in DoD must
start with the people the Department
already has who have software skills
or who are interested in acquiring
them. Unlike medicine, software skills
can be acquired through self-directed
and even informal training resources
such as on-demand, online webinars
and coding boot camps, etc., and the
Department has military and civilian
individuals who have taken it upon
themselves to gain technical skills outside of or in addition to formal DoD training. This kind of
initiative and aptitude, especially when it results in real contribution to the mission, should be
rewarded with appropriate opportunities for career advancement in this highly sought-after
specialty. As we have witnessed during site visits for this study, there are also many individuals
with more formally recognized software skills who are working with determination and even
courage to try to deliver great software in service of the mission, but whose efforts to practice
modern software techniques are poorly supported, and often actively blocked. Changes to policy
that make clear the Department’s support for these practices will help, but they must be married
with support for the individuals to stay and grow within their chosen field. DoD could leverage
several possible human capital pathways:

Figure 2.3. Airmen participate in Kessel Run’s pair
programming. [U.S. Air Force photo by Rick Berry]

https://www.dvidshub.net/image/4352015/airmen-work-aoc-pathfinder

SWAP Study Final Release, 3 May 2019 14

● Core military occupational series (MOS) and civilian occupational series for software
development that include subcategories to address the various duties found in modern
software development (e.g., developers/engineers, product owners, and designers).

● A secondary specialty series/designator for military members for software development.
Experts come from various backgrounds, and a special secondary designator or occupational
series for Service Members would be invaluable to tapping into their expertise even if they are
not part of the core “Information Technology” profession.

● A Special Experience Identifier or other Endorsement for military and civilian acquisition
professionals that indicates they have the necessary experience and training to serve on a
software acquisition team. This Identifier or Endorsement should be a requirement to lead an
acquisition team for a software procurement. Furthermore, this Identifier or Endorsement
needs to be expanded to the broader team working the software procurement to include legal
counsel, contract specialists, and financial analysts.

2.3 Getting It Right: Better Oversight AND Superior National Security

Getting software right in the Department requires more than changing development practices;
oversight (and budgeting and finance) must also change. Those responsible for oversight of DoD
software projects will need to learn to ask different questions and require different kinds of
information on different tempos, but their reward will be more clarity, greater satisfaction with
military software investments, and, ultimately, stronger national security.

Rules of thumb for those in appropriations and oversight roles over DevSecOps projects include
the following:

Expect value to the user earlier. Oversight of monolithic, waterfall projects has generally focused
on whether the team hit pre-determined milestones that may or may not represent actual value
or even working code, and on figuring out what to do when they do not. When evaluating and
appropriating funds to DevSecOps projects, it is more suitable to judge the project on the speed
by which it delivers working code and actual value to users. In a waterfall project, changes to the
plan generally reflect the team falling behind and are a cause for concern. In a project that is agile
and takes advantage of the other approaches this study recommends (including software reuse),
the plan is intended to be flexible because the team should be learning what works as they code
and test.

Ask for meaningful metrics. Successful projects will develop metrics that measure value to the
user, which involves close, ongoing communication with users. Source lines of code (SLOC) is
not a measure of value and should not be used to evaluate projects in any case, as its use creates
perverse incentives.

Assign a leader and hold him or her accountable. Part of the role of oversight is to ensure that
there is a single leader who is qualified to lead in a DevSecOps framework and has the authority
and responsibility to make the decisions necessary for the project to succeed. That person should
have the authority to assign tasks and work elements; make business, product, and technical

SWAP Study Final Release, 3 May 2019 15

decisions; and manage the feature and bug backlogs. This person is ultimately responsible for
how well the software meets the needs of its users, which is how the project should be evaluated.

Clarity and quality of leadership has long been tied to successful defense programs. Consider
Kelly Johnson with the U-2, F-104, and SR-71. Paul Kaminski with stealth technology. Admiral
Hyman Rickover with the nuclear Navy. Harry Hillaker with the F-16; and Bennie Schriever with
the intercontinental ballistic missile. The list goes on. The United States Digital Service recognized
this with Play 6 of the Digital Services Playbook—Assign One Leader and Hold That Person
Accountable.5 DoD would do well to remember this part of its history and work this practice into
its oversight plan.

Speed increases security. Conventional wisdom in DoD says that programs must move slowly
because moving quickly would threaten security. Often, the opposite is true. As we have learned
from the cyber world, when we are facing active threats, our ability to achieve faster detection,
response, and mitigation reduces the consequences of an attack or breach. In the digital domain,
where attacks can be launched at machine speeds, where AI and ML can probe and exploit
vulnerabilities in near real time, our current ability to detect, respond, and mitigate against digital
threat leaves our systems completely vulnerable to our adversaries.

The Department of Defense (DoD) faces mounting challenges in protecting its weapon
systems from increasingly sophisticated cyber threats. This state is due to the
computerized nature of weapon systems; DoD's late start in prioritizing weapon systems
cybersecurity; and DoD's nascent understanding of how to develop more secure weapon
systems. DoD weapon systems are more software dependent and more networked than
ever before…. Potential adversaries have developed advanced cyber-espionage and
cyber-attack capabilities that target DoD systems. (U.S. Government Accountability
Office, Weapon Systems Cybersecurity: DoD Just Beginning to Grapple with Scale of
Vulnerabilities [Washington, DC: U.S. Government Accountability Office, Oct 9, 2018], 2)

DoD must operate within its adversaries’ digital OODA loop. Much like today’s consumer
electronic companies, the Department needs the ability to identify and mitigate evolving software
and digital threats and to push continuous updates to fielded systems in near-real time.

DoD must be able to deploy software faster without sacrificing its abilities to test and validate
software. To accomplish this, the Department needs to reimagine the software development cycle
as a continuous flow rather than discrete software block upgrades. It should not only modernize
to use a DevSecOps approach to software development but should also modernize its entire suite
of development and testing tools and environments. DoD needs to be able to instrument its fielded
systems so that we can build accurate synthetic models that can be used in development and
test. The Department needs to be able to patch, update, enhance, and add new capabilities faster
than our adversaries’ abilities to exploit vulnerabilities.

Colors of money doom software projects. The foundational reasons for specific Congressional
guidance on how money is to be spent make sense. But because software is in continuous

5 “Digital Services Playbook,” U.S. Digital Service, https://playbook.cio.gov/#plays_index_anchor.

https://www.gao.gov/assets/700/694913.pdf
https://www.gao.gov/assets/700/694913.pdf

SWAP Study Final Release, 3 May 2019 16

development (it is never “done”—see Windows, for example), colors of money tend to doom
programs. We need to create pathways for “bleaching” funds to smooth this process for long-term
programs.

Do not pay for the factory every time you need a car. Appropriators must realize that DoD
desperately needs common infrastructure if it is to increase the speed and quality of the software
it produces. Today, it is as if the Department were buying cars but paying for the entire factory to
build each car separately. Appropriators should fund the smart development of common
infrastructure and reward its use in individual programs and projects. Evaluators should be wary
of programs and projects that fail to articulate how they are taking advantage of common
infrastructure and reusable components.

Standard is better than custom. In the same vein as the above, appropriators and evaluators
should understand the benefits of using standards from the software development industry.
Standards enable quality, speed, adoption, cost control, sustainability, and interoperability.

Technical debt is normal, and it is worth investing to pay it down. “Technical debt” refers to the
cost incurred by implementing a software solution that is expedient rather than choosing a better
approach that would take longer. Appropriators and evaluators should understandably expect to
see progress in terms of features on a regular basis. The exceptions are when software teams
must pay down technical debt or refactor code for greater performance. (This often results in
fewer lines of code but higher performance, which is why it is a mistake to judge a software project
based on the number of lines of code.) These periodic investments are to be expected on a
DevSecOps project and are necessary to ensure the overall quality and stability of the project.

Use data as a compass, not a grade. Too often, evaluators and appropriators receive data about
a program that suggests it is failing, but by the time they receive it, there is not much to be done
about it. Data is collected manually, then processed and presented, and by the time it is being
discussed, it is out of date. Mostly what happens at this point is that the project is given a poor
grade, which makes the teams increasingly risk averse and demoralized. Instead, projects should
be instrumented—equipped with built-in ways of seeing how and where they are going—so that
the data is available both to the teams and to evaluators in time to make adjustments. In this
model, the data is more like a compass, helping all parties make small corrections quickly to avoid
the poor grade. An effective oversight function will help steer projects and hold them accountable,
rather than punish poor performance.

2.4 Eye on the Prize: What Is the R&D Strategy for Our Investment?

The nature of software development may radically change in the near future. It is essential that
the DoD adequately fund R&D programs to advance the fields of computer science, including
computer programming, AI and ML, autonomy, quantum computing, networks and complex
systems, man–machine interfaces, and cybersecurity.

Today, computers are controlled by programs that are comprised of sets of instructions and rules
written by human programmers. AI and ML change how humans teach computers. Instead of
providing computers with programmed instructions, humans will train or supervise the learning

SWAP Study Final Release, 3 May 2019 17

algorithm being executed on the computer. Training is inherently different than programming.
Data becomes more important than code. Training errors are very different than programming
errors. Hacking AI is very different than hacking code. The use of synthetic environments and
“digital twins” (simulation-based emulators of physical components) may also become
increasingly important tools to train a computer. The impact of AI and ML on software
development will be profound and necessitates entirely new approaches and methods of
developing software.

New computing technologies are also on the horizon. Experts may agree that we are many years
away from developing a universal quantum computer (UQC), a generally programmable computer
combining both classical and quantum computing elements. Nevertheless, the United States
cannot afford to come in second in the race to develop the first UQC. The challenge is not only
confined to development of the UQC hardware, but includes developing quantum computing
programming languages and software. We also need to continue to invest in new quantum-
resistant technologies such as cryptography and algorithms and apply those technologies as soon
as possible to protect today’s data and information from tomorrow's UQC attacks.

The field of computer science continues to advance with the discovery and development of new
computer architectures and designs. We have already seen the impact of new architectures such
as cloud computing, GPUs (graphics processing units), low-power electronics, and Internet of
Things (IoT) on computing. New architectures are being studied and developed by both industry
and academia. DoD should not only continue to invest in the development of new architectures
but also to invest in new methods for quicker adoption of these technologies.

Given today's challenge of cybersecurity and software assurance, R&D must continue developing
more trusted computing to thwart future cyber attacks and creating abilities to execute software
with assurance on untrusted networks and hardware.

DoD should invest in new approaches to software development (beyond Agile), including the use
of computer-assisted programming and project management. While agile development is
currently a best practice in industry, managing the software cycle is still more art form than
science. New analytical approaches and next-generation management tools could significantly
improve software performance and schedule predictability. The Department should fund ongoing
research as well as support academic, commercial, and development community efforts to
innovate the software process.

SWAP Study Final Release, 3 May 2019 18

Chapter 3. Been There, Done Said That: Why Hasn’t This Already Happened?

Probably the most dangerous phrase you could ever use in any computer installation is that
dreadful one: “but we've always done it that way.” That's a forbidden phrase in my office.

— Rear Admiral Grace Hopper (1906-1992), computer programmer, presentation at MIT Lincoln
Laboratory on 25 April 1985, 23m41s

DoD and Congress have a rich history of asking experts to assess the state of DoD software
capabilities and recommend how to improve them. A DoD joint task force chaired by Duffel in
1982 started its report by saying,

Computer software has become an important component of modern weapon systems. It
integrates and controls many of the hardware components and provides much of the
functional capability of a weapon system. Software has been elevated to this prominent
role because of its flexibility to change and relatively low replication cost when compared
to hardware. It is the preferred means of adding capability to weapon systems and of
reacting quickly to new enemy threats. (Report of the DoD Joint Service Task Force on
Software Problems, 1982)

Indeed, this largely echoes our own views, although the scope of software has now moved well
beyond weapon systems, the importance of software has increased even further, and the rate of
change for software is many orders of magnitude faster, at least in the commercial world.

Five years later, a task force chaired by Fred Brooks began its executive summary as follows:

Many previous studies have provided an abundance of valid conclusions and detailed
recommendations. Most remain unimplemented. … [T]he Task Force is convinced that
today’s major problems with military software development are not technical problems, but
management problems. (Report of the Task Force on Military Software, Defense Science
Board, 1987)

This particular assessment, from over 30 years ago, referenced over 30 previous studies and is
largely aligned with the assessments of more recent studies, including this one.

And finally, in its 2000 study on DoD software, Defense Science Board (DSB) Chair Craig Fields
commented that,

Numerous prior studies contain valid recommendations that could significantly and
positively impact DoD software development programs. However the majority of these
recommendations have not been implemented. Every effort should be made to understand
the inhibitors that prevented previous recommendations. (Defense Science Board Task
Force on Defense Software, 2000)

So to a large extent the problem is not that we do not know what to do, but that we simply are not
doing it. In this chapter we briefly summarize some of the many reports that have come before
ours and attempt to provide some understanding of why the current state of affairs in defense
software is still so problematic. Using these insights, we attempt to provide some level of
confidence that our recommendations might be handled differently (remembering that “hope is
not a strategy”).

https://www.youtube.com/watch?v=ZR0ujwlvbkQ&t=23s

SWAP Study Final Release, 3 May 2019 19

3.1 37 Years of Prior Reports on DoD Software

The following table lists previous reports focused on improving software acquisition and practices
within DoD.

Date Org Short title / Summary of contents

Jul’82 DoD Joint Service Task Force on Software Problems
37 pp + 192 pp Supporting Information (SI); 4 major recommendations
The opportunities and problems posed by computer software embedded in DoD weapon
systems were investigated by a joint Service task force. The task force members with
software experience combined existing studies with the observations of DoD project
managers. The task force concluded that software represents an important opportunity in
regard to the military mission. Further, it was concluded that technological excellence in
software is an important factor in maintaining U.S. military superiority, but that many problems
facing DoD in software endangers this superiority.

Sep’87 DSB Task Force on Military Software
41 pp + 36 pp SI; 38 recommendations
The task force reviewed current DoD initiatives in software technology and methodology,
including the Ada effort, the STARS program, DARPA's Strategic Computing Initiative, the
Software Engineering Institute (SEI), and a planned program in the Strategic Defense
Initiative. The five initiatives were found to be uncoordinated, and the task force
recommended that the Undersecretary of Defense (Acquisition) establish a formal program
coordination mechanism for them. In spite of the substantial technical development needed in
requirements setting, metrics and measures, tools, etc., the Task Force was convinced that
the major problems with military software development were not technical problems, but
management problems. The report called for no new initiatives in the development of the
technology, some modest shift of focus in the technology efforts underway, but major re-
examination and change of attitudes, policies, and practices concerning software acquisition.

Dec’00 DSB Task Force on Defense Software
36 pp + 10 pp SI; 6 major recommendations
The Task Force determined that the majority of problems associated with DoD software
development programs are a result of undisciplined execution. Accordingly the Task Force's
recommendations emphasized a back-to-the-basics approach. The Task Force also noted
that numerous prior studies contain valid recommendations that could significantly and
positively impact DoD software development programs. The fact that the majority of these
recommendations have not been implemented should lead to efforts designed to understand
the inhibitors preventing these recommendations from being enacted.

2004 RAND Attracting the Best: How the Military Competes for Information Technology
Personnel
149 pp; no explicit recommendations
Burgeoning private-sector demand for IT workers, escalating private-sector pay in IT, growing
military dependence on IT, and faltering military recruiting all led to a concern that military
capability was vulnerable to a large shortfall in IT personnel. This report examined the supply
of IT personnel compared to the military’s projected future manpower requirements. It
concluded that IT training and experience, augmented by enlistment bonuses and educational
benefits as needed, seemed sufficient to ensure an adequate flow of new recruits into IT.
However, sharp increases in military IT requirements had the potential to create difficulties.

Feb’08 NCMA Generational Inertia: An Impediment to Innovation?
7 pp; no explicit recommendations
This article cites data to the effect that approximately 50 percent of the acquisition workforce
is within 5 years of retirement. Rather than being a problem, the article feels that retirement of
senior contracting specialists could effectively lead to acquisition reform: “Senior contracting
specialists’ resistance to change and indifference to professional development is the elephant

https://apps.dtic.mil/dtic/tr/fulltext/u2/a123449.pdf
http://www.dtic.mil/docs/citations/ADA188561
https://docs.google.com/spreadsheets/d/1s_D1I0zqzMf6osQap2tzDzwS6yZoDxzixLsY7E8AZaQ/edit#gid=1301305694
https://apps.dtic.mil/dtic/tr/fulltext/u2/a385923.pdf
https://www.rand.org/pubs/monographs/MG108.html
https://www.rand.org/pubs/monographs/MG108.html
http://www.ncmahq.org/docs/default-source/default-document-library/articles/cm_feb08_p44

SWAP Study Final Release, 3 May 2019 20

in the room that acquisition reformers are unwilling to acknowledge.”

Mar’09 DSB Task Force on Department of Defense Policies and Procedures for the
Acquisition of Information Technology
68 pp + 2 pp dissent + 15 pp SI; 4 major recommendations with 13 subrecommendations
The primary conclusion of the task force is that the conventional DoD acquisition process is
too long and too cumbersome to fit the needs of the many IT systems that require continuous
changes and upgrades. The task force recommended a unique acquisition system for
information technology.

2010a NRC Achieving Effective Acquisition of Information Technology in the Department of
Defense
164 pp + 16 major recommendations
This study board was asked to assess the efficacy of DoD’s acquisition and test and
evaluation (T&E) processes as applied to IT. The study concluded that DoD is hampered by
“a culture and acquisition-related practices that favor large programs, high-level oversight,
and a very deliberate, serial approach to development and testing (the waterfall model).” This
was contrasted with commercial firms, which have adopted agile approaches that focus on
delivering smaller increments rapidly and aggregating them over time to meet capability
objectives. Other approaches that run counter to commercial, agile acquisition practices
include “the DoD’s process-bound, high-level oversight [that] seems to make demands that
cause developers to focus more on process than on product, and end-user participation often
is too little and too late.”

2010b NRC Critical Code: Software Producibility for Defense
148 pp + 15 major recommendations
This study was charged to examine the nature of the national investment in software research
and ways to revitalize the knowledge base needed to design, produce, and employ software-
intensive systems for tomorrow’s defense needs. The study notes the continued reliance by
DoD on software capabilities in achieving its mission and notes that there are important areas
where DoD must push the envelope beyond mainstream capability. In other areas, however,
DoD benefits by adjusting its practices to conform to government and industry conventions,
enabling it to exploit a broader array of more mature market offerings.

Jul’16 CRS The Department of Defense Acquisition Workforce: Background, Analysis, and
Questions for Congress
14 pp; no explicit recommendations
The increase in the size of the acquisition workforce has not kept pace with increased
acquisition spending, which has signified an increase not only in the workload but also in the
complexity of contracting work. This report summarized four Congressional efforts aimed at
enhancing the training, recruitment, and retention of acquisition personnel.

Dec’16 CNA Independent Study of Implementation of Defense Acquisition Workforce
Improvement Efforts
147 pp + 30 pp SI; 21 major recommendations
This report examines the strategic planning of the Department of Defense regarding the
acquisition workforce (AWF). The study found significant improvements in several areas that
“not only reversed the decline in AWF capacity from the 1990s, but also reshaped the AWF
by increasing the number of early and mid-career personnel.”

Feb’17 SEI DoD’s Software Sustainment Study Phase I: DoD’s Software Sustainment
Ecosystem
101 pp; 5 major recommendations
Since the time in the early 1980s when software began to be recognized as important to DoD,
software sustainment has been considered a maintenance function. After almost four
decades, DoD is also at a tipping point where it needs to deal with the reality that software
sustainment is not about maintenance, but rather it is about continuous systems and software
engineering for the life cycle to evolve the software product baseline. This report recommends

https://www.acq.osd.mil/dsb/reports/2000s/ADA498375.p
https://www.acq.osd.mil/dsb/reports/2000s/ADA498375.p
http://www.nap.edu/catalog.php?record_id=12823
http://www.nap.edu/catalog.php?record_id=12823
https://www.nap.edu/catalog/12979
https://fas.org/sgp/crs/natsec/R44578.pdf
https://fas.org/sgp/crs/natsec/R44578.pdf
http://www.hci.mil/docs/Policy/Reports%20to%20Congress/CNA_Study_Def_AWF_Improvements(Public_Release)Feb2017.pdf
http://www.hci.mil/docs/Policy/Reports%20to%20Congress/CNA_Study_Def_AWF_Improvements(Public_Release)Feb2017.pdf

SWAP Study Final Release, 3 May 2019 21

changing that paradigm to enable the innovation needed to address a rapidly changing
technology environment, specifically through investments in human capital, better
performance measurement of software sustainment, and better visibility for the software
portfolio.

Mar’17 BPC Building a F.A.S.T. Force: A Flexible Personnel System for a Modern Military
82 pp + 15 pp SI; 4 major themes with 39 recommendations
This study describes today’s DoD personnel system as out of step with contemporary needs
and issues: “the current system is typically poorly coordinated, lacks accountability, is unable
to quickly obtain specialized talent, and fosters a groupthink mentality within the force.” It
concludes that an effective personnel system has to build a force that is adaptable to new
threats as they arise and technically proficient (among other characteristics).

Feb’18 DSB Design and Acquisition of Software for Defense Systems
28 pp + 22 pp SI; 7 (high-level) recommendations + ~32 subrecommendations
The Task Force assessed best practices from commercial industry as well as successes
within DoD. Commercial embrace of iterative development has benefited bottom lines and
cost, schedule, and testing performance, while the Department and its defense industrial
base partners are hampered by bureaucratic practices and an existing government-imposed
reward system. The Task Force concluded that the Department needs to change its internal
practices to encourage and incentivize new practices in its contractor base. The assessment
of the Task Force is that the Department can leverage best practices of iterative development
even in its mission-critical software systems.

2018 2016
NDAA

Section 809 Panel - Streamlining and Codifying Acquisition
1,275 pp; 93 recommendations
The Section 809 Panel was established by Congress in the FY 2016 NDAA to address issues
with the way DoD buys what it needs to equip its warfighters. The panel published an Interim
Report and a three-volume Final Report, containing a total of 93 recommendations aimed at
changing the overall structure and operations of defense acquisition both strategically and
tactically. Some changes hold potential for immediate effect, such as those that remove
unnecessary layers of approval in the many steps contracting officers and program managers
must take and those that remove unnecessary and redundant reporting requirements. Other
changes require a large shift in how the system operates, such as buying readily available
products and services in a manner similar to the private sector and managing capabilities
from a portfolio, rather than program, perspective.

Apr’19 DIB Software Is Never Done; Refactoring the Acquisition Code for Competitive
Advantage (this document)
78 pp + 207 pp SI; 4 main lines of effort, 10 primary and 0x10 additional recommendations
In this report, we focus on three overarching themes: (1) speed and cycle time are the most
important metrics for managing software; (2) software is made by people and for people, so
digital talent matters; and (3) software is different than hardware (and not all software is the
same). We provide a set of major recommendations that focus on four main lines of effort: (A)
refactoring statutes, regulations, and processes specifically for software—including
acquisition, development, assurance, deployment, and maintenance—to remove hardware-
centric bottlenecks while providing more insight and better oversight; (B) creating and
maintaining interoperable (cross-program/cross-Service) digital infrastructure to enable
continuous and rapid deployment, scaling, testing, and optimization of software as an
enduring capability; (C) creating new paths for digital talent and increasing the level of
understanding of modern software within the acquisition workforce; and (D) changing the
practice of how software is procured and developed by adopting modern software
development approaches.

As the table shows, studies dating back to at least 1982 have identified software as a particular
area of growing importance to DoD—and software acquisition as requiring improvement—and the
frequency and urgency of such studies identifying software acquisition as a major issue requiring
reform has increased markedly since 2010. Notable recent examples include the 2010 studies by

https://bipartisanpolicy.org/wp-content/uploads/2017/03/BPC-Defense-Building-A-FAST-Force.pdf
https://www.acq.osd.mil/dsb/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
https://docs.google.com/spreadsheets/d/1s_D1I0zqzMf6osQap2tzDzwS6yZoDxzixLsY7E8AZaQ/edit#gid=1962200611
https://section809panel.org/
https://docs.google.com/spreadsheets/d/1s_D1I0zqzMf6osQap2tzDzwS6yZoDxzixLsY7E8AZaQ/edit#gid=1724290712
http://innovation.defense.gov/software
http://innovation.defense.gov/software

SWAP Study Final Release, 3 May 2019 22

the National Research Council on Achieving Effective Acquisition of Information Technology in
the Department of Defense and Critical Code: Software Producibility for Defense, the 2017 study
conducted by the Carnegie Mellon University Software Engineering Institute (SEI) on DoD’s
Software Sustainment Ecosystem, and the 2018 DSB study on Design and Acquisition of
Software for Defense Systems.

The properties of software that contribute to its unique and growing importance to DoD are
summarized in this quote from the 2010 Critical Code study:

Software is uniquely unbounded and flexible, having relatively few intrinsic limits on the
degree to which it can be scaled in complexity and capability. Software is an abstract and
purely synthetic medium that, for the most part, lacks fundamental physical limits and
natural constraints. For example, unlike physical hardware, software can be delivered and
up-graded electronically and remotely, greatly facilitating rapid adaptation to changes in
adversary threats, mission priorities, technology, and other aspects of the operating
environment. The principal constraint is the human intellectual capacity to understand
systems, to build tools to manage them, and to provide assurance—all at ever-greater
levels of complexity. (Critical Code: Software Producibility for Defense, NRC, 2010)

Prior studies have observed that much of DoD software acquisition policy is systems- and
hardware-oriented and largely does not take these unique properties into account.6

The lack of action on most of the software recommendations from these studies has also been a
subject of perennial comment. The DSB’s 2000 study noted this phenomenon:

[Prior] studies contained 134 recommendations, of which only a very few have been
implemented. Most all of the recommendations remain valid today and many could
significantly and positively impact DoD software development capability. The DoD's failure
to implement these recommendations is most disturbing and is perhaps the most relevant
finding of the Task Force. Clearly, there are inhibitors within the DoD to adopting the
recommended changes. (Task Force on Defense Software, Defense Science Board,
2000)

The situation has not changed significantly since then despite additional studies and significant
numbers of new recommendations. There is little to suggest that the inhibitors to good software
practice have changed since 2000, and it is likely that the pace of technological change and
addition of new capabilities provided by software have only increased since then.

Major categories of prior recommendations. The SWAP study team conducted a literature review
of prior work on DoD software acquisition and extracted the specific recommendations that had
been made, binning them according to major topics. The focus of the effort was on recent studies,
with the bulk of the work since 2010, resulting in 139 recommendations that were extracted and
categorized.

6 For example, “DoD’s Software Sustainment Study Phase I: DoD’s Software Sustainment Ecosystem,”
SEI, 2017.

https://www.nap.edu/read/12823/chapter/1
https://www.nap.edu/read/12823/chapter/1
https://apps.dtic.mil/dtic/tr/fulltext/u2/a534043.pdf
https://www.acq.osd.mil/dsb/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf
https://www.acq.osd.mil/dsb/reports/2010s/DSB_SWA_Report_FINALdelivered2-21-2018.pdf

SWAP Study Final Release, 3 May 2019 23

A few prevailing themes stood out from this body of work, representing issues that were
commented upon in multiple studies:

● Contracts: contracts should be modular and flexible.
● Test and evaluation: test and evaluation (T&E) should be incorporated throughout the

software process with close user engagement.
● Workforce: software acquisition requires specific skills and knowledge along with user

interaction and senior leadership support.
● Requirements: requirements should be reasonable and prioritized; X (the focus of each report)

should advocate for the need to move from compliance-based, overly prescriptive
requirements to more iterative approaches.

● Acquisition strategy/oversight: DoD should encourage agencies to pursue business process
innovations.

● Software process: the Department should adopt spiral/agile development approaches to
reduce cost, risk, and time.

The three areas that were dealt with most often in the prior studies were acquisition oversight,
contracting, and workforce. These three topics alone accounted for 60 percent of all of the
recommendations we compiled. We summarize the major recurring prior recommendations in
each of those areas as follows:

Recommendations from recent work in acquisition oversight:

● Ensure non-interruption of funding of programs that are successfully executing to objective
(rather than budget), while insulating programs from unfunded mandates.

● Ensure that durations be reasonably short and meaningful and allow for discrete progress
measurement.

● Design the overall technology maturity assessment strategy for the program or project.

● Encourage program managers to share bad news, and encourage collaboration and
communication.

● Require program managers to stay with a project to its end.

● Empower program managers to make decisions on the direction of the program and to resolve
problems and implement solutions.

● Follow an evolutionary path toward meeting mission needs rather than attempting to satisfy
all needs in a single step.

Recommendations from recent work in contracting:

● Requests for proposals (RFPs) for acquisition programs entering risk reduction and full
development should specify the basic elements of the software framework supporting the
software factory, including code and document repositories, test infrastructure, software tools,
check-in notes, code provenance, and reference and working documents informing
development, test, and deployment.

SWAP Study Final Release, 3 May 2019 24

● Establish a common list of source selection criteria for evaluating software factories for use
throughout the Department.

● Contracting Officers (KOs) must function as strategic partners tightly integrated into the
program office, rather than operate as a separate organization that simply processes the
contract paperwork.

● Develop and maintain core competencies in diverse acquisition approaches and increase the
use of venture capital–type acquisitions such as Small Business Innovative Research (SBIR),
Advanced Concept Technology Development (ACTD), and Other Transaction Authority (OTA)
as mechanisms to draw in nontraditional companies.

Recommendations from recent work on workforce issues:

● Service acquisition commands need to develop workforce competency and a deep familiarity
with current software development techniques.

● The different acquisition phases require different types of leaders. The early phases call for
visionary innovators who can explore the full opportunity space and engage in intuitive
decision making. The development and production phases demand a more pragmatic
orchestrator to execute the designs and strategies via collaboration and consensus decisions.

● U.S. Special Operations Command (USSOCOM) must develop a unique organizational
culture that possesses the attributes of responsiveness, innovation, and problem solving
necessary to convert strategic disadvantage into strategic advantage.

● Encourage employees to study statutes and regulations and explore innovative and
alternative approaches that meet the statutory and regulatory intent.

● Rapid acquisition succeeds when senior leaders are involved in ensuring that programs are
able to overcome the inevitable hurdles that arise during acquisition, and empower those
responsible with achieving the right outcome with the authority to get the job done while
minimizing the layers in between.

To help illustrate the continuity of the history of these issues and the lack of progress despite
consistent, repeated similar findings, we consider the case of recommendations related to
software capabilities of the acquisition workforce (areas where we are also recommending
change).

Calls to improve DoD’s ability to include software expertise in its workforce have a long history.
DoD studies dating back to 1982 have raised concerns about the technical competencies and
size of DoD’s software workforce [DSB’82, DSB’87]. In 1993, the DoD Acquisition Management
Board identified a need to review the DoD’s software acquisition management education and
training curricula. This study concluded that no existing DoD workforce functional management
group was responsible for the software competencies needed in the workforce and that software
acquisition competencies were needed in many different acquisition career fields. However, the
Board asserted that no new career field was needed for Software Acquisition Managers.

In 2001, the same concerns regarding the software competencies of the DoD acquisition
workforce once again surfaced. The DoD Software Intensive Systems Group conducted a

SWAP Study Final Release, 3 May 2019 25

software education and training survey of the acquisition workforce.7 This survey demonstrated
that less than 20 percent of the ACAT program staff had taken the basic Software Acquisition
Management course (SAM 101) and that less than 20 percent of the ACAT program staff had
degrees in computer science, software engineering, or information technology. The specific
recommendations from this analysis included (1) instituting mandatory software-intensive
systems training for the workforce; (2) developing a graduate-level program for software systems
development and acquisition; and (3) requiring ACAT 1 programs to identify a chief software/
systems architect.

A year later, Congress mandated that the Secretary of each military department establish a
program to improve the software acquisition processes of that military department.8 Subsequently
each Service established a strategic software improvement program (Army 2002, Air Force 2004,
and Navy 2006). These Service initiatives have continued at some level. However, with the
sunsetting of the Software Intensive Systems Group at the Office of the Secretary of Defense
(OSD) level, the enterprise focus on software waned. During this same period, the Navy started
the Software Process Improvement Initiative (SPII), which identified issues preventing software-
intensive projects from meeting schedule, cost, and performance goals. This initiative highlighted
the lack of adequately educated and trained software acquisition professionals and systems
engineers.

In 2007, OSD issued guidance to create the Software Acquisition Training and Education Working
Group (SATEWG) with a charter to affirm required software competencies, identify gaps in
Defense Acquisition Workforce Improvement Act (DAWIA) career fields, and develop a plan to
address those gaps. This group was composed of representatives from the Services, OSD, and
other organizations, including the SEI. The group developed a software competency framework
that identified four key knowledge areas and 29 competencies that could inform the different
acquisition workforce managers about the software competencies to be integrated into their
existing career field competency models. There has been no follow-on effort to evaluate the
progress of the SATEWG or its outcomes.

Today, in the absence of a DoD-wide approach to describing, managing, and setting goals against
a common understanding of needed software skills, each Service (as well as each software
sustainment organization) has evolved its own approach or model for identifying software
competencies for its workforce.

This historical context highlights two key points. First, DoD has long recognized the challenges of
addressing the technical competencies and size of the software workforce across the life cycle.
However, there is limited evidence of the outcomes from these different efforts. Second, this
history clearly indicates that acquiring software human capital and equipping that workforce with
the necessary competencies are persistent and dynamic challenges that demand a continuous
enterprise strategy.

7 Dennis Goldenson, & Matthew Fisher, Improving the Acquisition of Software Intensive Systems
(CMU/SEI-2000-TR-003), (Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University,
2000), http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=5171.
8 Public Law 107-314, Section 804, 2 December 2002, https://www.govinfo.gov/content/pkg/PLAW-
107publ314/html/PLAW-107publ314.htm.

https://www.google.com/url?q=https://www.govinfo.gov/content/pkg/PLAW-107publ314/html/PLAW-107publ314.htm&sa=D&ust=1555641614361000&usg=AFQjCNH3OU1K8EiYtUgzVuvdD_xfCAGO1Q
https://www.google.com/url?q=https://www.govinfo.gov/content/pkg/PLAW-107publ314/html/PLAW-107publ314.htm&sa=D&ust=1555641614361000&usg=AFQjCNH3OU1K8EiYtUgzVuvdD_xfCAGO1Q

SWAP Study Final Release, 3 May 2019 26

3.2 Breaking the Spell: Why Nothing Happened Before, but Why This Time Could Be
Different

Given the long and profound history of inaction on past studies, we have attempted to create our
own “Theory of (Non)Change.” Why does the Department struggle to step up to rational, generally
agreed-upon change? We offer the following three drivers:

The (Patriotic and Dutifully) Frozen Middle. Our process in executing this study has been to talk
to anyone and everyone we could within various departments of DoD and the Services, to gather
as many different perspectives as possible on what is needed, and to find out what is working and
what needs to be stomped upon. As with many change management opportunities, we find
significant top-down support for what we are trying to do, especially from those who see the
immediate need for more, better, faster mission capability and those at the command level who
are directly frustrated by the current processes that are just not working. At the other end, we see
digital natives demanding change but with limited power to make it happen—people who are fully
enmeshed in how the tech world works, people who have all the expectations that have been
created by their private-sector lifestyle and economy. And then we have the middle, who are
dutifully following the rules and have been trained and had success defined for a different world.
For the middle, new methodologies and approaches introduce unknown risks, while the old
acquisition and development approaches built the world's best military. We question neither the
integrity nor the patriotism of this group. They are simply not incentivized to the way we believe
modern software should be acquired and implemented, and the enormous inertia they represent
is a profound barrier to change.

Unrequited Congress. Congress is responsible for approving and overseeing DoD’s development
programs. While it is clear that Congress takes its oversight role seriously, it does so knowing that
to have oversight requires something to oversee, and it understands its fundamental responsibility
is to enable the Department to execute its mission. But oversight matters, and recommendations
for change that do not also provide insight into how new ways of doing things will allow Congress
to perform its role are a very tough sell. In addition, there is a sense of unrequited return from
past changes and legislation such as Other Transaction Authorities (OTAs), pilot programs, and
special hiring authorities. In many cases, Congress believes it has already provided the tools and
flexibilities for which DoD has asked. It is perhaps unreasonable to expect a positive response to
ask for more when current opportunities have not been fully exploited.

Optimized Acquisition (for Something Else!).

 Knowing was a barrier which prevented learning. — Frank Herbert

While some may (justifiably) argue that the current acquisition system is not optimized for
anything, it is the product of decades of rules upon rules, designed to speak to each and every
edge case that might crop up in the delivery of decades-long hardware systems, holds risk
elimination at a premium, and has a vast cadre of dedicated practitioners exquisitely trained to
prosper within that system. This is a massive barrier to change and informs our recommendations
that argue for major new ways of acquiring software and not just attempt to re-optimize to a
different local maximum.

SWAP Study Final Release, 3 May 2019 27

What we are trying to do that we think is different. Given the long history of DoD and
Congressional reports that make recommendations that are not implemented, why do we think
that this report will be any different? Our approach has been to focus not on the report and its
recommendations per se, but rather on the series of discussions around the ideas in this report
and the people we have interacted with inside the Pentagon and at program site visits. The
recommendations in this report thus serve primarily as documentation of a sequence of iterative
conversations, and the real work of the study is the engagements before and after the report is
released.

We also believe that there are some ideas in the report that, while articulated in many places in
different ways, are emphasized differently here. In particular, a key point of focus in this report is
the use of speed and cycle time as the key drivers for must change and the need to optimize
statutes, regulations, and processes to allow management and oversight of software. We believe
that optimizing for the speed at which software can be utilized for competitive advantage will
create an acquisition system that is much better able to provide security, insight, and scale.

Finally, we have tried to make this report shorter and pithier than previous reports, so we hope
people will read it. It also is staged so that each reader, with his or her specific levels of authority
and responsibility, can navigate an efficient path to reaching his or her own conclusions on how
best to support what is contained here.

3.3 Consequences of Inaction: Increasing Our Attack Surface and Shifting Risk to the
Warfighter

So what happens if history does, in fact, repeat itself and we again fail to step up to the changes
that have been so clearly articulated for so long? Certainly by continuing to follow acquisition
processes designed to limit risk for the hardware age, we will not reduce risk but instead will
simply transfer that risk to the worst possible place—the warfighter who most needs the tools in
her arsenal to deliver the missions we ask her to perform. But in addition, as we have continually
stressed throughout this study, there are several real differences in today’s world compared to
the environment in which past efforts were made.

First, and most important, weapon systems, and the bulk of the operational structure on which
DoD executes its mission, are now fundamentally software (or software-defined) systems, and as
such, delays in implementing change amplify the capability gaps that slow, poor, or unsupportable
software creates. Second, the astonishing growth of the tech sector has created a very different
competitive environment for the talent most needed to meet DoD’s needs. Decades ago, DoD
was the leading edge of the world’s coolest technology, and passionate, skilled software
specialists jumped at the chance to be at that edge. That is simply not the case today, and while
a commitment to national security is a strong motivator, if the changes recommended in this study
are not implemented, the competitive war for talent, within our country, will be lost.

The modern software methodologies enumerated in this report—and the recommendations
concerning culture, regulation and statute, and career trajectories that enable those
methodologies—are the best path to providing secure, effective, and efficient software to users.

SWAP Study Final Release, 3 May 2019 28

Cyber assurance, resilience, and relevance are all delivered much more effectively when done
quickly and incrementally, using the tools and methods recommended in this study.

Finally we call attention back to Section 1.4 (What are the challenges that we face [and
consequences of inaction]?). To summarize: “The long-term consequence of inaction is that our
adversaries’ software capabilities can catch and surpass ours. … Our adversaries’ software
capabilities are growing as ours are stagnating.”

SWAP Study Final Release, 3 May 2019 29

Chapter 4. How Do We Get There from Here: Three Paths for Moving Forward

The history of technology is the story of man and tool-hand and mind-working together. If the
hardware is faulty or if the software is deficient, the sounds that emerge will be discordant; but when

man and machine work together, they can make some beautiful music.

— Melvin Kranzberg, Technology and History: Kranzberg’s Laws,
(Technology and Culture, 27[3]:1986), 558

The previous three chapters provided the rationale for why we need to do (not just say) something
different about how DoD develops, procures, assures, deploys, and continuously improves
software in support of defense systems. The private sector has figured out ways to use software
to accelerate their businesses and DoD should accelerate its incorporation of those techniques
to its own benefit, especially in ensuring that its warfighters have the tools they need in a timely
fashion to execute their missions in today’s hardware-enabled, software-defined environment. In
this chapter, we lay out three different paths for moving forward, each under a different set of
assumptions and objectives. A list of some representative, high-level steps is provided for each
path, along with a short analysis of advantages and weaknesses.

4.1 Path 1: Make the Best of What We’ve Got

Congress has provided DoD with substantial authority and flexibility to implement the mission of
the Department. Although difficult and often inefficient, it is possible to implement the
recommendations outlined in this report making use of the existing authorities and, indeed, there
are already examples of the types of activities that we envision taking place across OSD and the
Services. In this section, we attempt to articulate a path that builds on these successes and does
not require any change in the law nor major changes in regulatory structure. The primary steps
required to implement this path should focus on changing the practices by which software is
developed, procured, assured, and deployed as well as updating some of the regulations and
processes to facilitate cultural and operational changes.

To embark on this first path, DoD should streamline its processes, allowing more rapid
procurement, deployment, and updating of software. OSD and the Services should also work
together to allow better cross-service and pre-certified Authorization to Operate (ATO), easier
access to large-scale cloud computing, and use of modern toolchains that will benefit the entire
software ecosystem. The acquisition workforce, both within OSD and the Services, should be
provided with better training and insight on modern software development (one of the more
frequent recommendations over the past 37 years) so that they can take advantage of the
approaches that software allows that are different than hardware. Most importantly, government
and industry must come together to implement a DevSecOps culture and approach to software,
building on practices that are already known and used in industry.

The following list provides a summary of high-level steps that require changes to DoD culture and
processes, but could be taken with no change in current law and relatively minor changes to
existing regulations:

https://www.jstor.org/stable/pdf/3105385.pdf?refreqid=excelsior%3A247c0c115faae9b55ad7fb10cf565195

SWAP Study Final Release, 3 May 2019 30

● Make use of existing authorities such as OTAs and mid-tier acquisition (Sec 804) to implement
a DevSecOps approach to acquisition to the greatest extent possible under existing statutes,
regulations, and processes.

● Require cost assessment and performance estimates for software programs (and software
components of larger programs) to be based on metrics that track speed and cycle time,
security, code quality, and useful capability delivered to end users.

● Create a mechanism for ATO reciprocity between Services and industrial base companies to
enable sharing of software platforms, components, and infrastructure and rapid integration of
capabilities across (hardware) platforms, (weapons) systems, and Services.

● Remove obstacles to DoD usage of cloud computing on commercial platforms, including
Defense Information System Agency (DISA) cloud access point (CAP) limits, lack of ATO
reciprocity, and access to modern software development tools.

● Expand the use of (specialized) training programs for chief information officers (CIOs), Service
acquisition executives (SAEs), program executive officers (PEOs), and program managers
(PMs) that provide (hands-on) insight into modern software development (e.g., Agile, DevOps,
DevSecOps) and the authorities available to enable rapid acquisition of software.

● Increase the knowledge, expertise, and flexibility in program offices related to modern
software development practices to improve the ability of program offices to take advantage of
software-centric approaches to acquisition.

● Require access to source code, software frameworks, and development toolchains, with
appropriate intellectual property (IP) rights, for all DoD-specific code, enabling full security
testing and rebuilding of binaries from source.

● Create and use automatically generated, continuously available metrics that emphasize
speed, cycle time, security, and code quality to assess, manage, and terminate software
programs (and software components of hardware programs).

● Shift the approach for acquisition (and development) of software (and software-intensive
components of larger programs) to an iterative approach: start small, be iterative, and build
on success—or be terminated quickly.

● Make security a first-order consideration for all software-intensive systems, recognizing that
security-at-the-perimeter is not enough.

● Shift from a list of requirements for software to a list of desired features and required
interfaces/characteristics to avoid requirements creep or overly ambitious requirements.

● Maintain an active research portfolio into next-generation software methodologies and tools,
including the integration of ML and AI into software development, cost estimation, security
vulnerabilities, and related areas.

● Invest in transition of emerging approaches from academia and industry to creating, analysis,
verification, and testing of software into DoD practice (via pilots, field tests, and other
mechanisms).

SWAP Study Final Release, 3 May 2019 31

● Automatically collect all data from DoD weapon systems and make the data available for
machine learning (via federated, secured enclaves, not a centralized repository).

● Mandate a full program review within the first 6–12 months of development to determine if a
program is on track, requires corrective action, or deserves cancellation.

This path has the advantage that the authorities required to undertake it are already in place and
the expertise exists within the Department to begin moving forward. We believe that the there is
strong support for these activities at the top and bottom of the system, and several groups (e.g.,
the Defense Digital Service [DDS], the Joint Improvised Threat Defeat Organization [JIDO], and
Kessel Run) have demonstrated that the flexibilities exist within the current system to develop,
procure, assure, deploy, and update software more quickly. The difficulty in this path is that it
requires individuals to figure out how to go beyond the default approaches that are built into the
current acquisition system. Current statutes, regulations, and processes are very complicated;
there is a “culture of no” that must be overcome; and hence using the authorities that are available
requires substantial time, effort, and risk (to one’s career, if not successful). The risk in pursuing
this path is that change occurs too slowly or not at scale, and we are left with old software that is
vulnerable and cannot serve our needs. Our adversaries have the same opportunities that we do
for taking advantage of software and may be able to move more quickly if the current system is
left in place.

4.2 Path 2: Tune the Defense Acquisition System to Optimize for Software

While the first steps to refactoring the defense acquisition system can be taken without
necessarily having to change regulations, the reality of the current situation is that Congress and
DoD have created a massive “spaghetti code” of laws and regulations that are simply slowing
things down. This might be OK for some types of long-development, long-duration hardware, but
as we have articulated in the previous three chapters it is definitely not OK for (most types of)
software.

This path takes a more active approach to modifying the acquisition system for software by
identifying those statutes, regulations, and processes that are creating the worst bottlenecks and
modifying them to allow for faster delivery of software to the field. We see this path as one of
removing old pieces of code (statutory, regulatory, or process) that are no longer needed or that
should not be applied to software, as well as increasing the expertise in how modern software
development works so that software programs (and software-centric elements of larger programs)
can be optimized for speed and cycle time.

The following list provides a set of high-level steps that require some additional changes to DoD
culture and process, but also modest changes in current law and existing regulations. These steps
build on the steps listed in path 1 above, although in some cases they can solve the problems
that the previous actions were trying to work around.

● Refactor and simplify Title 10 and the defense acquisition system to remove all statutory,
regulatory, and procedural requirements that generate delays for acquisition, development,
and fielding of software while adding requirements for continuous (automated) reporting of
cost, performance (against updated metrics), and schedule.

SWAP Study Final Release, 3 May 2019 32

● Create streamlined authorization and appropriation processes for defense business systems
(DBS) that use commercially available products with minimal (source code) modification.

● Plan, budget, fund, and manage software development as an enduring capability that crosses
program elements and funding categories, removing cost and schedule triggers that force
categorization into hardware-oriented regulations and processes.

● Replace the Joint Capabilities Integration and Development System (JCIDS), the Planning,
Programming, Budgeting and Execution (PPB&E) process, and the Defense Federal
Acquisition Regulation Supplement (DFARS) with a portfolio management approach to
software programs, assigned to "PEO Digital" or an equivalent office in each Service that uses
direct identification of warfighter needs to decide on allocation priorities.

● Create, implement, support, and require a fully automatable approach to T&E, including
security, that allows high-confidence distribution of software to the field on an iterative basis
(with frequency dependent on type of software, but targeting cycle times measured in weeks).

● Prioritize secure, iterative, collaborative development for selection and execution of all new
software programs (and software components of hardware programs) (see DIB’s Detecting
Agile BS as an initial view of how to evaluate capability).

● For any software developed for DoD, require that software development be separated from
hardware in a manner that allows new entrants to bid for software elements of the program
on the basis of demonstrated capability.

● Shift from certification of executables, to certification of code, to certification of the
development, integration, and deployment toolchain, with the goal of enabling rapid fielding
of mission-critical code at high levels of information assurance.

● Require CIOs, SAEs, PEOs, PMs, and any other acquisition roles involving software
development as part of the program to have prior experience in software development.

● Restructure the approach to recruiting software developers to assume that the average tenure
of a talented engineer will be 2–4 years, and make better use of highly qualified experts
(HQEs), intergovernmental personnel act employees (IPAs), reservists, and enlisted
personnel to provide organic software development capability.

● Establish a Combat Digital Service (CDS) unit within each Combatant Command (COCOM)
consisting of software development talent that can be used to manage Command-specific IT
assets, at the discretion of the combatant commander. DDS, operating at the OSD level, is a
good model for what a CDS can do for each COCOM.

Pursuing this path will allow faster updates to software and will improve security and oversight
(via increased insight). In many cases, the Department is already executing some of the actions
required to enable this path. The weakness in this path is that software would generally use the
same basic approach to acquisition as hardware, with various carve-outs and exceptions. This
approach runs the risk that software programs still move too slowly due to the large number of
people who have to say yes and the need to train a very large acquisition force to understand
how software is different than hardware (and not all software is the same).

https://media.defense.gov/2018/Oct/09/2002049591/-1/-1/0/DIB_DETECTING_AGILE_BS_2018.10.05.PDF
https://media.defense.gov/2018/Oct/09/2002049591/-1/-1/0/DIB_DETECTING_AGILE_BS_2018.10.05.PDF

SWAP Study Final Release, 3 May 2019 33

4.3 Path 3: A New Acquisition Pathway and Appropriations Category for Software to Force
Change in the Middle

The final path is the most difficult and will require dozens of independent groups to agree on a
common direction, approach, and set of actions. At the end of this path lies a new defense
acquisition system that is optimized for software-centric systems instead of hardware-centric
systems and that prioritizes security, speed, and cycle time over cost, schedule, and (rigid)
requirements.

To undertake this path, Congress and OSD must write new statutes and regulations for software,
providing increased (and automation-enabled) insight to reduce the risk of slow, costly, and
overgrown programs and enabling rapid deployment and continuous improvement of software to
the field. Laws will have to be changed, and management and oversight will have to be reinvented,
focusing on different measures and a quicker cadence. OSD and the Services will need to create
and maintain interoperable (cross-program/cross-Service) digital infrastructure that enables rapid
deployment, scaling, testing, and optimization of software as an enduring capability; manage it
using modern development methods; and eliminate the existing hardware-centric regulations and
other barriers for software (and software-intensive) programs. Finally, the Services will need to
establish software development as a high-visibility, high-priority career track with specialized
recruiting, education, promotion, organization, incentives, and salary.

The following list of high-level steps are required to pursue this path, builds on the steps listed in
the previous paths:

● Establish one or more new acquisition pathways for software that prioritize continuous
integration and delivery of working software in a secure manner, with continuous oversight
from automated analytics.

● Create a new appropriations category that allows (relevant types of) software to be funded as
a single budget item, with no separation between RDT&E, production, and sustainment.

● Establish and maintain digital infrastructure within each Service or Agency that enables rapid
deployment of secure software to the field, and incentivize its use by contractors.

● Plan and fund computing hardware (of all types) as consumable resources, with continuous
refresh and upgrades to the most recent, most secure operating system and platform
components.

● Create software development groups in each Service consisting of military and/or civilian
personnel who write code that is used in the field, and track individuals who serve in these
groups for future DoD leadership roles.

This path attempts to solve the longstanding issues with software by creating an acquisition
pathway and an appropriations category that are fine-tuned for software. It will require a very large
effort to get the regulations, processes, and people in place that are required to execute it
effectively, and there will be missteps along the way that generate controversy and unwanted
publicity. In addition, it will likely be opposed by those currently in control of selling or making
software for DoD, since it will require that they retool their business to a very new approach that

SWAP Study Final Release, 3 May 2019 34

is not well defined at the outset. But if successful, this path has the potential to enable DoD to
develop, procure, assure, deploy, and continuously improve software at a pace that is relevant
for modern missions and builds on the substantial success of the U.S. private sector.

SWAP Study Final Release, 3 May 2019 35

Chapter 5. What Would the DIB Do: Recommendations for Congress and DoD

It takes a lot of hard work to make something simple, to truly understand the underlying
challenges and come up with elegant solutions.

— Steve Jobs as quoted by Walter Isaacson, “How Steve Jobs’ Love of Simplicity Fueled a
Design Revolution,” (Smithsonian Magazine, September 2012)

In this final chapter we lay out our recommendations for what Congress and DoD should do to
implement the type of software acquisition and practices reform that we believe is needed for the
future. Our recommendations are organized according to four lines of effort, each of which bring
together different parts of the defense ecosystem as stakeholders:

A. Congress and OSD should refactor statutes, regulations, and processes for software
B. OSD and the Services should create and maintain cross-program/cross-Service digital

infrastructure
C. The Services and OSD should create new paths for digital talent (especially internal talent)
D. DoD and industry must change the practice of how software is procured and developed

For each of these lines of effort, we have identified the 2–3 most important recommendations that
we believe Congress and DoD should undertake. These “Top Ten” primary recommendations
were chosen not because they solve the entire problem but because they will make the biggest
difference; without them, substantial change is not likely. In addition, we have identified 16
additional recommendations for consideration once the execution of the first 10 recommendations
is successfully underway. For each recommendation, a draft implementation plan is provided in
Appendix A that gives a list of actions that can be used to implement the recommendation, as
well as more detail on the rationale, supporting information, and similar recommendations from
other studies. Potential legislative and regulatory language to implement selected
recommendations is included in Appendix B. While we have tried hard to provide specific actions,
owners, and target dates that will drive an implementation plan for each recommendation, we
recognize that in the end, owners will be decided by the Department’s response to our study and
owners will use our actions as a starting point to their own implementation plans.

SWAP Study Final Release, 3 May 2019 36

Figure 5.1 Recommendation structure. For each line of effort, a set of primary recommendations
(bold) is provided, along with a set of additional recommendations for consideration. Each
recommendation contains a draft implementation plan that includes background information on the
rationale, vision, and stakeholders.

5.1 The Ten Most Important Things to Do (Starting Now!)

In this section we lay out what we believe are the most important steps for Congress and DoD to
take to fully leverage the opportunities presented by software and the private sector’s strength in
modern development practices. Our commitment to these steps will directly impact the
Department’s ability to achieve the 2018 National Defense Strategy9 goals of increased lethality,
stronger alliances while positioning for new partnerships, and reformed business practices for
better performance and affordability.

9 U.S. Department of Defense, Summary of the 2018 National Defense Strategy: Strengthening the
American Military’s Competitive Edge, (Washington, DC: U.S. Department of Defense),
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf.

SWAP Study Final Release, 3 May 2019 37

Line of Effort A. Congress and OSD should
refactor statutes, regulations, and processes
for software, providing increased insight to
reduce the risk of slow, costly, and overgrown
programs and enabling rapid deployment and
continuous improvement of software to the field.
Reinvent management and oversight, focusing
on different measures and a quicker cadence.

Recommendation A1. Establish one or more new acquisition pathways for software that
prioritize continuous integration and delivery of working software in a secure manner, with
continuous oversight from automated analytics

Current law, regulation, policy, and internal DoD processes make DevSecOps-based software
development extremely difficult, requiring substantial and consistent senior leadership
involvement. Consequently, DoD is challenged in its ability to scale DevSecOps software
development practices to meet mission needs. The desired state is that programs have the ability
to rapidly field and iterate new functionality in a secure manner, with continuous oversight based
on automated reporting and analytics, and utilize IA-accredited commercial development tools.

Implementation of this recommendation could be accomplished by having USD(A&S), in
coordination with USD(C) and Cost Assessment and Program Evaluation (CAPE), submit a
legislative proposal using Sec 805 to propose new acquisition pathways for two or more classes
of software (e.g., application, embedded), optimized for DevSecOps, for approval by the House
and Senate Armed Services Committees. A draft of such language, in response to 2016 NDAA
Section 805, is included in Appendix B. If approved, USD(A&S) could develop and issue a
Directive-Type Memorandum (DTM) for new software acquisition pathways, and the SAEs could
issue Service-level guidance for new acquisition pathways. USD(A&S), with SAEs, should select
an initial set of programs that are using DevSecOps to convert to or utilize the new software
acquisition pathways at the same time as developing and implementing training at Defense
Acquisition University (DAU) on new software acquisition pathways for all acquisition communities
(FM, Costing, PM, IT, SE, etc.). As the pathways become better understood, the DTM can be
converted to a DoD Instruction (5000.SW?), incorporating lessons learned during initial program
implementation.

This recommendation is supported by the ideas for change listed by the Acquisition & Strategy
subgroup and is aligned with the recommendations of the 1987 and 2009 DSB studies.

Recommendation A2. Create a new appropriation category for software capability delivery that
allows (relevant types of) software to be funded as a single budget item, with no separation
between RDT&E, production, and sustainment

Current law, regulation, and policy treat software acquisition as a series of discrete sequential
steps; accounting guidance treats software as a depreciating asset. These processes are at odds
with software being continuously updated to add new functionality and create significant delays

Figure 5.2. The West Front of the U.S.
Capitol. [Photo by Architect of the Capitol]

https://www.aoc.gov/capitol-buildings/about-us-capitol-building

SWAP Study Final Release, 3 May 2019 38

in fielding user-needed capability. The desired state is the establishment of a new appropriation
(major force program category) so that programs are better able to prioritize how effort is spent
on new capabilities versus fixing bugs/vulnerabilities, improving existing capabilities, etc. Such
prioritization can be made based on warfighter/user needs, changing mission profiles, and other
external drivers, not constrained by available sources of funding.

Implementation of this recommendation could be accomplished by having USD(A&S) submit a
legislative proposal to create a new appropriations category for software and software-intensive
programs for approval by the House and Senate Armed Services Committees and funding by the
House and Senate Appropriations Committees. A draft of such language, linked to the acquisition
pathway described in Recommendation A1, is included in Appendix B. The DoD Comptroller,
working with CAPE, would need to make necessary modifications in supporting PPB&E systems
to allow use and tracking of the new software appropriation. USD(A&S), in coordination with the
SAEs, should select the initial programs that will use the new software appropriation from among
those that are currently using DevSecOps-compatible development approaches. Budget exhibits
for the new software appropriation, replacing the current P-Forms and R-Forms, should be
prepared by USD(A&S) working with USD(C), CAPE, and the Appropriations Committees, and
those programs selected to use the new appropriation category should begin using the exhibits
upon selection into the category (see Appendix C). Finally, the Federal Accounting Standards
Advisory Board in coordination with USD(A&S) and USD(C) will need to change the audit
treatment of software for this category to : (1) create a separate category for software instead of
characterizing software as property, plant, and equipment; (2) establish a default setting that
software is an expense, not an investment; and (3) ensure that “sustainment” is an integrated part
of the software life cycle.

This recommendation builds on the recommendations in the DIB’s Ten Commandments of
Software (at Appendix E) and our Visit Observations and Recommendations that budgets for
software (and software-intensive) programs should support the full, iterative life cycle of the
software. In addition, the Acquisition & Strategy, Appropriations, Contracting, and Sustainment &
Modernization subgroups all had recommendations that support this approach. The basic
approach advocated here was also articulated in the 1987 DSB task force on military software
and Government Accountability Office (GAO) studies in 2015 and 2017, and is consistent with
the Portfolio Management Framework Recommendations 41 and 42 of the Section 809 Panel.

SWAP Study Final Release, 3 May 2019 39

Line of Effort B. OSD and
the Services should create
and maintain cross-
program/ cross-Service
digital infrastructure that
enables rapid deployment,
scaling, and optimization of
software as an enduring
capability, managed using
modern development methods
in place of existing (hardware-
centric) regulations and
providing more insight (and
hence better oversight) for
software-intensive programs.

Recommendation B1. Establish and maintain digital infrastructure within each Service or
Agency that enables rapid deployment of secure software to the field, and incentivize its use
by contractors

Currently, each DoD program develops its own development and test environments, which
requires redundant definition and provisioning, replicated assurance (including cyber), and
extended lead times to deploy capability. Small companies have difficulties providing software
solutions to DoD because those software and development test environments are not available
outside the incumbent contractor or they have to build (and certify) unique infrastructure from
scratch. The desired state is that defense programs will have access to, and be stakeholders in,
a cross-program, modern digital infrastructure that can benefit from centralized support and
provisioning to lower overall costs and the burden for each program. Development infrastructure
supporting continuous integration/continuous delivery (CI/CD) and DevSecOps is available as
best-of-breed, and government off-the-shelf (GOTS) is provided so that contractors want to use
it, though DoD programs or organizations that want or need to go outside that existing
infrastructure can still do so.

Recommendation B2. Create, implement, support, and use fully automatable approaches to
testing and evaluation (T&E), including security, that allow high-confidence distribution of
software to the field on an iterative basis

To deliver software at speed, rigorous, automated testing processes and workflows are essential.
Current DoD practices and procedures often see operational test and evaluation (OT&E) as a
tailgate process, sequentially after development has been completed, slowing down delivery of
useful software to the field and leaving existing (potentially poorly performing and/or vulnerable)
software in place. The desired state is that development systems, infrastructure, and practices
are focused on continuous, automated testing by developers (with users). To the maximum extent
possible, system operational testing is integrated (and automated) as part of the development

Figure 5.3. Soldiers review the Army’s Command Post Computing
Environment, a software system that consolidates tools, programs,
and tasks into an integrated, interoperable, and cybersecure
computing infrastructure framework. [U.S. Army photo by Dan
Lafontaine, PEO C3T]

https://www.dvidshub.net/image/4488066/see-big-picture

SWAP Study Final Release, 3 May 2019 40

cycle using data, information, and test protocols delivered as part of the development
environment. Testing and evaluation/certification of COTS components occurs once (if justified),
and then ATO reciprocity (Rec B3) is applied to enable use in other programs, as appropriate.

Recommendation B3. Create a mechanism for Authorization to Operate (ATO) reciprocity
within and between programs, Services, and other DoD agencies to enable sharing of
software platforms, components, and infrastructure and rapid integration of capabilities across
(hardware) platforms, (weapon) systems, and Services

Current software acquisition practice emphasizes the differences among programs: perceptions
around different missions, different threats, and different levels of risk tolerance mean that
components, tools, and infrastructure that have been given permission to be used in one context
are rarely accepted for use in another. The lack of ATO reciprocity drives each program to create
its own infrastructure, repeating time- and effort-intensive activities needed to certify elements as
secure for their own specific context. The desired state is that modern software components,
tools, and infrastructure, once accredited as secure within the DoD, can be used appropriately
and cost-effectively by multiple programs. Programs can then spend a greater percentage of their
budgets on developing software that adds value to the mission rather than spending time and
effort on basic software infrastructure. COTS components are accredited once and then made
available for use in other programs, as appropriate.

Line of Effort C. The Services
and OSD should create new
paths for digital talent
(especially internal talent) by
establishing software
development as a high-visibility,
high-priority career track and
increasing the level of
understanding of modern software
within the acquisition workforce.
Increased internal capability is
necessary both to allow organic
(internal) development and to
enable the Department to best
serve as a knowledgeable partner
for software acquired from
commercial sources.

Recommendation C1. Create software development units in each Service consisting of
military and civilian personnel who develop and deploy software to the field using DevSecOps
practices

Figure 5.4. Airmen assigned to the 707th Communications
Squadron, which supports more than 5,700 personnel around
the world, update software for Air Force networks. [U.S. Navy
photo by Rick Naystatt/Released]

https://www.dvidshub.net/image/4121567/networking-airmen

SWAP Study Final Release, 3 May 2019 41

DoD’s capacity to apply modern technology and software practices to meet its mission is required
to remain relevant in increasingly technical fighting domains, especially against peer adversaries.
While DoD has both military and civilian software engineers (often associated with maintenance
activities), the IT career field suffers from a lack of visibility and support. The Department has not
prioritized a viable recruiting strategy for technical positions, and has no comprehensive training
or development program that prepares the technical and acquisition workforce to adequately
deploy modern software development tools and methodologies. The desired state is that DoD
recruits, trains, and retains internal capability for software development, including by Service
Members, and maintains this as a separate career track (like DoD doctors, lawyers, and
musicians). Each Service has organic development units that are able to create software for
specific needs and that serve as an entry point for software development capability in military and
civilian roles (complementing work done by contractors). The Department’s workforce embraces
commercial best practices for the rapid recruitment of talented professionals, including the ability
to onboard quickly and provide modern tools and training in state-of-the-art training environments.
Individuals in software development career paths are able to maintain their technical skills and
take on DoD leadership roles.

Recommendation C2. Expand the use of (specialized) training programs for CIOs, SAEs,
PEOs, and PMs that provide (hands-on) insight into modern software development (e.g.,
Agile, DevOps, DevSecOps) and the authorities available to enable rapid acquisition of
software

Acquisition professionals have been trained and had success in the current model, which has
produced the world’s best military, but this model does not serve well for software. New
methodologies and approaches introduce unknown risks, and acquisition professionals are often
not incentivized to make use of the authorities available to implement modern software methods.
At the same time, senior leaders in DoD need to be more knowledgeable about modern software
development practices so they can recognize, encourage, and champion efforts to implement
modern approaches to software program management. The desired state is that senior leaders,
middle management, and organic and contractor-based software developers are aligned in their
view of how modern software is procured and developed. Acquisition professionals are aware of
all of the authorities available for software programs and use them to provide flexibility and rapid
delivery of capability to the field. Program leaders are able to assess the status of software (and
software-intensive) programs and spot problems early in the development process, as well as
provide continuous insight to senior leadership and Congress. Highly specialized requirements
are scrutinized to avoid developing custom software when commercial offerings are available that
are less expensive and more capable.

SWAP Study Final Release, 3 May 2019 42

Line of Effort D. DoD and
industry must change the
practice of how software is
procured and developed by
adopting modern software
development approaches,
prioritizing speed as the critical
metric, ensuring cybersecurity
is an integrated element of the
entire software life cycle, and
purchasing existing
commercial software whenever
possible.

Recommendation D1. Require access to source code, software frameworks, and
development toolchains—with appropriate IP rights—for all DoD-specific code, enabling full
security testing and rebuilding of binaries from source

Source code for many DoD systems is not available to DoD for inspection and testing, and DoD
relies on suppliers to write code for new compute environments. As code ages, suppliers are not
required to maintain codebases without an active development contract, and “legacy” code is not
continuously migrated to the latest hardware and operating systems. The desired state is that
DoD has access to source code for DoD-specific software systems that it operates and uses to
perform detailed (and automated) evaluation of software correctness, security, and performance,
enabling more rapid deployment of both initial software releases and (most important) upgrades
(patches and enhancements). DoD is able to rebuild executables from scratch for all of its systems
and has the rights and ability to modify (DoD-specific) code when new conditions and features
arise. Code is routinely migrated to the latest computing hardware and operating systems, and
routinely scanned against currently known vulnerabilities. Modern IP language is used to ensure
that the government can use, scan, rebuild, and extend purpose-built code, but contractors are
able to use licensing agreements that protect any IP that they have developed with their own
resources. Industry trusts DoD with its code and has appropriate IP rights for internally developed
code.

Recommendation D2. Make security a first-order consideration for all software-intensive
systems, recognizing that security-at-the-perimeter is not enough

Current DoD systems often rely on security-at-the-perimeter as a means of protecting code from
unauthorized access. If this perimeter is breached, then a large array of systems can be
compromised. Multiple reports by the GAO, the Department of Defense Office of Inspector
General (DoDIG), and other agencies have identified cybersecurity as a major issue in acquisition
programs. The desired future state is that DoD systems use a zero-trust security model in which
it is not assumed that anyone who can gain access to a given network or system should have
access to anything within that system. DoD uses regular and automated penetration testing to

Figure 5.5. Connected battle command suites. [U.S. Army photo]

https://dod.defense.gov/portals/1/features/2015/0715_science-tech/rotator/science_tech3.jpg

SWAP Study Final Release, 3 May 2019 43

track down vulnerabilities, and engages red teams to attempt to breach our systems before our
adversaries do.

Recommendation D3. Shift from the use of rigid lists of requirements for software programs
to a list of desired features and required interfaces/characteristics to avoid requirements
creep, overly ambitious requirements, and program delays

Current DoD requirements processes significantly impede its ability to implement modern
software development practices by forcing programs to spend years establishing requirements
and insisting on satisfaction of requirements before a project is considered “done.” This impedes
rapid implementation of features that are of greatest value to the user. The desired state is that
rather than a list of requirements for every feature, programs should establish a minimum set of
requirements required for initial operation, security, and interoperability, and place all other
desired features on a list that will be implemented in priority order, with the ability for DoD to
redefine priorities on a regular basis.

5.2 The Next Most Important Things to Tackle

DoD must make a large number of changes to fully realize the vision that 37 years of studies have
articulated. This study solicited input from a wide range of stakeholders in the defense software
enterprise, including OSD and Service leaders, industry participants in our visits and roundtables,
and FFRDC personnel who helped put together our report and identify the recommendations that
we should make. The list of recommendations below are the next 0x10 (16) recommendations
that we believe can be implemented after actions on the 10 above are solidly underway (like
software, implementing recommendations is never “done”). We list these second not because
they are dependent on the primary recommendations but simply to emphasize the urgency of the
Top Ten.

ID Recommendation
A3 Require cost assessment and performance estimates for software programs (and software

components of larger programs) of appropriate type be based on metrics that track speed and
cycle time, security, code quality, and functionality

A4 Refactor and simplify Title 10, DFARS, and DoDI 5000.02/5000.75 to remove statutory,
regulatory, and procedural requirements that generate delays for acquisition, development, and
fielding of software; while adding requirements for continuous (automated) reporting of cost,
performance (against updated metrics), and schedule

A5 Create streamlined authorization and appropriation processes for defense business systems
(DBS) that use commercially available products with minimal (source code) modification

A6 Plan, budget, fund, and manage software development as an enduring capability that crosses
program elements and funding categories, removing cost and schedule triggers associated with
hardware-focused regulations and processes

A7 Replace JCIDS, PPB&E, and DFARS with a portfolio management approach to software
programs, assigned to "PEO Digital" or an equivalent office in each Service that uses direct
identification of warfighter needs to determine allocation priorities for software capabilities

SWAP Study Final Release, 3 May 2019 44

B4 Prioritize secure, iterative, collaborative development for selection and execution of new software
development programs (and software components of hardware programs), especially those using
commodity hardware and operating systems

B5 Remove obstacles to DoD usage of cloud computing on commercial platforms, including DISA
CAP limits, lack of ATO reciprocity, and access to modern software development tools

B6 Shift from certification of executables for low- and medium-risk deployments to certification of
code/architectures and certification of the development, integration, and deployment toolchain

B7 Plan and fund computing hardware (of all appropriate types) as consumable resources, with
continuous refresh and upgrades to current, secure operating systems and platform components

C3 Increase the knowledge, expertise, and flexibility in program offices related to modern software
development practices to improve the ability of program offices to take advantage of software-
centric approaches to acquisition

C4 Restructure the approach to recruiting digital talent to assume that the average tenure of a
talented engineer will be 2–4 years, and make better use of HQEs, IPAs, special hiring
authorities, reservists, and enlisted personnel to provide organic software development capability,
while at the same time incentivizing and rewarding internal talent

D4 Create and use automatically generated, continuously available metrics that emphasize speed,
cycle time, security, user value, and code quality to assess, manage, and terminate software
programs (and software components of hardware programs)

D5 Shift the approach for acquisition and development of software (and software-intensive
components of larger programs) to an iterative approach: start small, be iterative, and build on
success—or be terminated quickly

D6 Maintain an active research portfolio into next-generation software methodologies and tools,
including the integration of ML and AI into software development, cost estimation, security
vulnerabilities, and related areas

D7 Invest in transition of emerging tools and methods from academia and industry for creating,
analyzing, verifying, and testing of software into DoD practice (via pilots, field tests, and other
mechanisms)

D8 Automatically collect all data from DoD national security systems, networks, and sensor systems,
and make the data available for machine learning (via federated, secured enclaves, not a
centralized repository).

5.3 Monitoring and Oversight of the Implementation Plan

It would be naive to believe that just listing the recommendations above will somehow ensure they
are quickly and easily implemented after 37 years of previous, largely consistent
recommendations have had relatively minor impact. We believe that DoD should use these
recommendations (and the ones that preceded them) to create an implementation plan for review
by stakeholders (including the DIB, if there is interest). This implementation plan might use as its
starting point the proposed implementation plans that we have articulated in Appendix A, with
agreement by the Secretary of Defense, the Undersecretaries of Defense, the Service Chiefs,
CAPE, and DOT&E to support the creation and execution of the next iteration of the
implementation plan.

We propose the following timeline for implementing the recommendations proposed here:

● (Immediately): Define, within 60 days after delivery of this report to Congress, a detailed
implementation plan and assign owners to begin each of the top recommendations.

SWAP Study Final Release, 3 May 2019 45

● FY19 (create): High-level endorsement of the vision of this report, and support for activities
that are consistent with the desired end state (i.e., DevSecOps and enterprise-level
architecture and infrastructure). Identify and launch programs to move out on the priority
recommendations (start small, iterate quickly).

● FY20 (deploy): Initial deployment of authorities, budgets, and processes for reform of software
acquisition and practices. Execute representative programs according to the main lines of
effort and primary recommendations in this report. Implement these recommendations in the
way we implement modern software: implement now, measure results, and modify
approaches.

● FY21 (scale): Streamlined authorities, budgets, and processes enabling reform of software
acquisition and practices at scale. In this time frame, adopt a new methodology to estimate
as well as determine the value of software capability delivered (and not based on lines of
code).

● FY22 (optimize): Conditions established so that all DoD software development projects
transition (by choice) to software-enabled processes, with the talent and ecosystem in place
for effective management and insight.

5.4 Kicking the Can Down the Road: Things That We Could Not Figure Out How to Fix

Despite the fairly comprehensive view that we have attempted to take in this study regarding how
to improve the defense software enterprise, there are a number of challenges remaining that we
were not able to address. We summarize these here for the next study (or perhaps one 37 years
from now) to consider as DoD continues this path forward.

Over-oversight. DoD’s sprawling software enterprise has many oversight actors, spanning
Congress, OSD, Service or Component leadership, and other executive branch actors like the
GAO. These actors each take frequent oversight action in attempts to improve the software in
specific programs and also make well-intentioned efforts to improve the health of the overall
system. However, these oversight actions focus primarily on addressing the behavior of the
people developing and maintaining the software, overlooking the fact that the oversight itself is
equally part of DoD’s software problem. Ultimately, we cannot fix software without fixing oversight.

There are at least two categories of problems when it comes to software oversight: structural and
substantive.

From a structural perspective, there are too many actors involved in oversight. A program
manager, tasked with leading a software development effort, may have as many as 17 other
actors who can take some form of oversight action on the program. Most of these individuals do
not possess the authority to cancel a program unilaterally, but all have the ability to delay progress
or create uncertainty while seeking corrective action for their concerns. These oversight actors
often have overlapping or unclear roles and authorities, as well as competing interests and
incentives. This means that in addition to the necessary checks and balances required between
organizations, there is debate and active competition inside each of the organizations with, for
example, various offices in OSD arguing among themselves in addition to arguing with Congress

SWAP Study Final Release, 3 May 2019 46

and the Services. Further, there is significant personnel turnover within these positions, meaning
that any consensus tends to be short lived.

Substantively, the various oversight actors often do not possess a shared understanding of what
constitutes good practice for software or its oversight. Further, these actors may not share a
common vision for what DoD’s software enterprise should look like today or in the future. The
majority of oversight attention and action is placed on individual programs than on considering
portfolios in the aggregate or the performance of the system as a whole. This program oversight
is highly subjective in nature, relying on reports and PowerPoint slides presenting narratives and
custom-created data. Worse, this oversight operates primarily according to conventional wisdom
associated with the oversight of hardware programs, using decades-old heuristics when
considering cost, schedule, and performance.

Without understanding what good looks like, or the right questions to ask, oversight actors risk
enacting poor fixes. These actions can also be at odds with stated policy. Oversight actions are
always more powerful than written policy, meaning that disparities between the two create the
risk of cognitive dissonance or a shadow policy environment. Disparities also put program
leadership in the unfair position of having to resolve the competing priorities of others, with the
knowledge that failure to do so will lead to more blame and action from above.

Structural and substantive problems lead to oversight that is inconsistent and confusing, making
it essentially impossible to systematically identify symptoms, determine root causes, or implement
scalable fixes. This, in turn, allows everyone involved in DoD software development and
maintenance to feel aggrieved, blame everyone other than themselves for systemic issues, and
continue their behavior without reflection or change, thus perpetuating the cycle.

The approach by oversight organizations both on the Hill and in DoD should be that policy is
treated as the current hypothesis for how best to ship code that DoD’s users need. Through the
use of data-driven governance, each program should then be tested against that policy while also
being a test of the policy. The hypothesis, and policy, must be continually updated based on
standard data that is recognized by, and accessible to, all oversight actors. Implementing such
an approach is within the power of the oversight community but would be challenging and appears
unlikely given current culture and practices. Regardless, those involved in the oversight of DoD
software should not expect meaningfully improved outcomes for that software until the oversight
practices used to improve that software are themselves improved.

Promotion practices. Software is disproportionately talent driven. Access to strong engineering
talent is one of the most important factors that determine the success or failure of software
projects. All that our rivals have to do to surpass us in national security applications of software
such as AI, autonomy, or data analytics is to leverage their most talented software engineers to
work on those applications. And yet in DoD, as much as we struggle to attract those with technical
talent, we also struggle to elevate the talent we have.

The companies and institutions that are winning the software game recognize the importance of
identifying and cultivating talented software leaders (whether they are engineers, managers, or
strategists working closely with contractors) and actively promote and reward employees based

SWAP Study Final Release, 3 May 2019 47

on merit and demonstrated contributions. In contrast, human capital practices in DoD, sometimes
by design and sometimes by habit and culture, narrowly limit how technical talent can be
evaluated and often prioritize time in grade. The Department needs to figure out how to recognize
when civilians and Service Members show an aptitude for software and software management
and be able to promote, reward, and retain these individuals outside of the current constraints.

Using commercial software whenever possible. DoD should not build something that it can buy.
If there is an 80 percent commercial solution, it is better to buy it and adjust—either the
requirements or the product—rather than build it from scratch. It is generally not a good idea to
over-optimize for what we view as “exceptional performance,” because counter-intuitively this may
be the wrong thing to optimize for as the threat environment evolves over time. Similarly, DoD
should take actions to ensure that both the letter and spirit of commercial preference laws (e.g.,
10 USC 2377, which requires defense agencies to give strong preference to commercial and non-
developmental products) are being followed.

There is a myth that the U.S. private sector—where much of the world’s software talent is
concentrated—is unwilling to work on national security software. The reality is that DoD has failed
to award meaningful government contracts to commercial software companies, which has
generally led to companies making a business decision to avoid it. DoD’s existing efforts to target
the commercial software sector are governed by a “spray and pray” strategy, rather than by
making concentrated investments.10 DoD seems to love the idea of innovation, but does not love
taking sizeable bets on new entrants or capabilities. It is interesting that Palantir and SpaceX are
the only two examples since the end of the Cold War of venture-backed, DoD-focused businesses
reaching multibillion dollar valuations. By contrast, China has minted around a dozen new
multibillion dollar defense technology companies over the same time period. Some of these
problems are purely cultural in nature and require no statutory/regulatory changes to address.
Others likely will require the changes detailed in our recommendations.

That said, in many cases, there will not be an obvious “buy” option on the table. DoD and the
Services should also work together to prioritize interoperable approaches to software and systems
that enable rapid deployment, scaling, testing, and optimization of software as an enduring
capability; manage them using modern development methods; and eliminate selected hardware-
centric regulations and other particularly problematic barriers. The Services should find ways to
better recognize software as a key area of expertise and provide specialized education and
organizational structures that are better tuned for rapid insertion and continuous updates of
software in the field and in the (back) office.

10 While the overall funding commitments are large—$2 billion from DARPA for AI, for example—those
commitments have resulted in few, if any, contracts for private companies other than traditional defense
contractors. They have therefore failed to create significant incentives for the commercial tech sector to
invest in government applications of AI.

SWAP Study Final Release, 3 May 2019 48

Acknowledgments

The SWAP study members are indebted to a large number of individuals who helped provide
valuable input, guidance, and support for the study and for the creation of this report.

We would first like to thank the SWAP study team, who coordinated the many activities associated
with the study, including arranging for visits, briefings, and meetings; running the SWAP working
group activities; and assisting with the production of the final report. Our initial study director, Bess
Dopkeen, was detailed to the study from CAPE and provided outstanding leadership to the overall
study. Her vision, energy, and knowledge of the Department were essential in establishing the
interactive nature of this activity and helping us obtain insight into the many previously unknown
aspects of DoD. She was succeeded by Jeff Boleng, the USD(A&S) Special Assistant for
Software, who initially served as our liaison to A&S and took over as study director when Bess
departed the Pentagon. Bess and Jeff were assisted by three outstanding members of the core
SWAP team: Courtney Barno, Devon Hardy, and Sandra O’Dea. The study and the report could
not have come together without the tireless (and patient!) efforts of Bess, Courtney, Devon,
Sandy, and Jeff, who participated in every aspect of the report and helped us shape its content,
style, and tone.

The SWAP study was also assisted by individuals from the Institute for Defense Analyses (IDA),
SEI, and MITRE who served as our experts on the acquisition process and were invaluable in
working through the detailed recommendations. Their knowledge of past studies, the acquisition
regulations, the many novel approaches to acquisition reform, and the language of the acquisition
community helped us better understand the challenges and opportunities for software acquisition
and reform. We would particularly like to thank Kevin Garrison (IDA), Nick Guertin (SEI), Tamara
Marshall-Keim (SEI), Forrest Shull (SEI), and Craig Ulsh (MITRE) for their help, encouragement,
and constant advice.

A major element of the study was the participation of a large SWAP working group consisting of
DoD employees who worked with Bess and the SWAP team to provide input to the study and to
articulate pain points, ideas for changes, and proposed updates to legislation and regulations. A
full list of individuals who participated in the working groups is listed in Appendix J, but we would
particularly like to thank John Bergin, Ben FitzGerald, Bill Greenwalt, Amy Henninger, Paul
Hullinger, Peter Levine, Melissa Naroski Merker, Jane Rathbun, Ed Wolski, and Philomena
Zimmerman.

The Defense Innovation Board (DIB) staff were tightly linked to the SWAP study, which took place
under the auspices of the Science and Technology (S&T) Committee. Josh Marcuse was
instrumental in initiating the study (including identifying and hiring Bess) and providing keen
insights into the report contents and recommendations. Mike Gable, Janet Boehnlein, and
Christopher “Bruno” Brunett served as our designated federal officers (DFOs), accompanying us
on trips, visits, and meetings and helping us uphold the Federal Advisory Committee Act (FACA)
guidelines in a manner that enabled us to interact in a transparent and interactive way with
members of the public, the Department, and Congress.

SWAP Study Final Release, 3 May 2019 49

Many high-ranking officials within the Pentagon took the time to meet with us and provide their
input, views, and encouragement for our efforts. Chief among these was Ellen Lord, Under
Secretary of Defense for Acquisition & Sustainment, who provided input to our study and support
for our meetings, while always being careful to help protect the independence of the study team
in support of the charge from Congress. We would also like to thank Bob Daigle (CAPE), Dana
Deasy (CIO), Bob Behler (DOT&E), Hondo Guerts (USN), and Will Roper (USAF) for their
willingness to meet with us on multiple occasions.

Finally, we are indebted to the many individuals working on DoD programs with whom we met,
both in industry and in government. On our many visits and in countless briefings, individuals who
were working within the current system, and often pushing the boundaries of what is possible,
gave us their honest insights and feedback. We are particularly grateful for the help we received
from Tory Cuff, Leo Garciga, and CAPT Bryan Kroger, for their willingness to speak with us and
help us understand what the future could look like.

SWAP Study Final Release, 3 May 2019 50

SWAP Vignettes

To help illustrate some of the issues facing the Department in the area of software acquisition and
practices, the SWAP study solicited a set of “vignettes” on different topics of relevance to the
study. These vignettes represent “user stories” contributed by study team members and
collaborators; the views expressed here do not necessarily reflect the views of the SWAP study
(though they are consistent with the overarching themes contained in the report). The intent of
these vignettes is to provide some additional points of view and insights that are more specific
and, in some cases, more personal.

List of vignettes:
● Implementing Continuous Delivery: The JIDO Approach
● F22: DevOps on a Hardware Platform
● Making It Hard to Help: A Self-Denial of Service Attack for the SWAP Study
● DDS: Fighting the Hiring Process Instead of Our Adversaries
● Kessel Run: The Future of Defense Acquisitions Is #AgileAF
● JMS: Seven Signs Your Software (Program) Is in Trouble

https://docs.google.com/document/d/1WRy5U94UjtIGqLfA81VvHpDwTuxwpuaSPBRnt8n5l5w/edit
https://docs.google.com/document/d/1WRy5U94UjtIGqLfA81VvHpDwTuxwpuaSPBRnt8n5l5w/edit

SWAP Study Final Release, 3 May 2019 51

Vignette 1 – Implementing Continuous Delivery: The JIDO Approach
Forrest Shull

One theme that emerges from the work in this study is that DoD certainly does have successes
in terms of modern, continuous delivery of software capability; however, in too many cases, these
successes are driven by heroic personalities and not supported by the surrounding acquisition
ecosystem. In fact, in several cases the demands of the rest of the ecosystem cause friction that,
at best, adds unnecessary overhead to the process and slows the delivery of capability. The Joint
Improvised-Threat Defeat Organization (JIDO), within the Defense Threat Reduction Agency, is
a compelling example.

JIDO describes itself as “the DoD’s agile response mechanism, a Quick Reaction Capability
(QRC) as a Service providing timely near-term solutions to the improvised threats endangering
U.S. military personnel around the world.”11 As such, the speed of delivery is a key success
criterion, and JIDO has made important improvements in this domain. Central to accomplishing
these successes has been the adoption of a DevSecOps solution along with a continuous ATO
process, which exploits the automation provided by DevSecOps to quickly assess security issues.

At least as important as the tooling are the tight connections that JIDO has enabled among the
stakeholder groups that have to work together with speed to deliver capability. JIDO has
personnel embedded in the user communities associated with different COCOMs, referred to as
Capability Data Integrators (CDIs). These personnel are required to be familiar with the domain,
familiar with the technology, and forward-leaning in terms of envisioning technical solutions to
help warfighter operations. Almost all CDIs have prior military experience and are deployed in the
field, moving from one group of users to another, helping to train them on the tools that are
available, and at the same time understanding what they still need. CDIs have tight reachback to
JIDO and are able to identify important available data that can be leveraged by software
functionality and can be developed with speed through the DevSecOps pipeline.

JIDO has also focused on knocking down barriers among contractors and government personnel.
JIDO finds value in relying on contractor labor that can flex and adapt as needed to the technical
work, with effort spent on making sure that the mix of government personnel and multiple
contractor organizations can work together as a truly integrated team. To accomplish this, JIDO
has created an environment with a great deal of trust between government and contractors. There
are responsibilities that are inherently governmental and tasks that can be delegated to the
contractor. Finding the right mix requires experimentation, especially since finding the personnel
with the right skillset on the government side is difficult.

Despite these successes at bringing together stakeholders within the JIDO team, stakeholders in
the program management office (PMO) sometimes describe substantial difficulties in working with
the rest of the acquisition ecosystem, since on many dimensions the Agile/DevSecOps approach
does not work well with business as usual. For example, they describe instances where the
Services or the Joint Chiefs push back on solutions that were created to address requirements
from the field. Thanks to the CDIs, JIDO can create a technical solution that answers identified

11 JIDO SecDevOps Concept of Operations, v1.

SWAP Study Final Release, 3 May 2019 52

requirements from warfighters in the field, but that does not mean it will get approval for
deployment. There is a mismatch and potential for miscommunication when the organizations
that control deployment don’t own the requirements themselves.

Also, because JIDO operates in an agile paradigm in which requirements can emerge and get re-
prioritized, it is difficult for the organization to justify budget requests upfront in the way that their
command chain requires. JIDO addresses this today by creating notional, detailed mappings of
functionality to release milestones. Since a basic principle of the approach is that capabilities
being developed can be modified or re-prioritized with input from the warfighter, this predictive
approach provides little or no value to the JIDO teams themselves. Even though JIDO refuses to
map functionality in this way more than 2 years out, given that user needs can change significantly
in that time, the program has had to add headcount just to pull these reports together.

JIDO has no problem showing value for the money spent. It is able to show numbers of users
and, because it has personnel embedded with user communities, can discuss operational impact.
As mentioned above, JIDO’s primary performance metric is “response from the theater.”
Currently, JIDO faces a backlog of tasks representing additional demand for more of its services,
as well as a demand for more CDIs. Despite these impactful successes, the surrounding
ecosystem unfortunately provides little in the way of support and much that hinders the core
mission. It is difficult to see how these practices can be replicated in other environments where
they can provide positive impact, until these organizational mismatches can be resolved.

 Slide image received from former DTRA-JIDO chief technology officer.

SWAP Study Final Release, 3 May 2019 53

Vignette 2 – F22: DevOps on a Hardware Platform

Craig Ulsh and Maj Zachary McCarty

The F-22A Raptor program recognized a need for greater speed and agility and took action. In
mid-2017, the F-22 Program Office realized the F-22A Raptor modernization efforts were not
delivering at a speed that would keep pace with emerging threats. Program leadership secured
the expertise of the Air Force Digital Service (AFDS). A joint team assessed the program and
captured a series of observations and recommendations. The overarching assessment was:

The Air Force must move faster, accept a greater amount of risk, and commit to radical
change with how the F-22A modernization effort is managed and technology is
implemented. Competitors are moving faster, and blaming poor vendor performance will
not help the F-22A Raptor remain the dominant air superiority platform.

The F-22A Program Office realized that change was needed. The F-22 acquisition process,
steeped in the traditional DoDI 5000 model, was slow and cumbersome, with initial retrofits taking
at least 6 years to deliver. The program recognized the following symptoms:

● Requirements were static and rigidly defined.
● Capability was delivered in large, monolithic releases.
● Change was avoided and treated as a deviation from well-guarded baselines.
● The development team placed too much focus on intensive documentation.
● Separate programs with separate contracts drove inefficiencies and conflicting interests.
● Insufficient automation for incremental testing resulted in marathon test events. More

specifically, the team identified a number of issues that are common among weapon
systems:

Development practices. Development processes were matched to the traditional acquisition
process. Large feature sets, multiple baselines, highly manual developer testing tools, and limited
focus on continuous software infrastructure upgrades contributed to the slow capability delivery
cycle. The team made several specific recommendations under the overarching recommendation
for the software development teams to adopt modern software practices.

Planning. Several inefficiencies were identified in the planning process including lack of metrics
for estimation of effort, inability to prioritize, and inefficient use of developer time. Again, the team
proposed that the program adopt modern agile software processes.

Organization. Organizational gaps included poor collaboration across teams, lack of incentives
for engineering talent, and competing priorities across multiple vendors.

Contracts. The single most significant observation is the failure to prioritize.

In November 2017, the F-22 Program Office took several steps to accelerate the F-22A
modernization efforts. In response to outdated development practices, the program office
restructured TACLink 16 and TACMAN programs into a single agile development stream. To
properly match the contractor effort with a new development approach, a “level of effort” for prime

SWAP Study Final Release, 3 May 2019 54

development labor was adopted. To address some of the planning concerns, steps were taken to
adjust program alignments and authorities.

The F-22A Raptor program has made positive steps in adopting a more modern approach to both
hardware and software acquisition. Perhaps the best example is a new contract structure that
allows for quick reaction to emerging requirements and changing user priorities while incentivizing
a long-time incumbent contractor for continuous improvement. The Program Office has learned
lessons during the transition to more agile approaches, including:

● Culture change has been the biggest hurdle.
● The program must recognize and accept that things will go wrong.
● Security controls limit flexibility and communication.

The program is on the right track with a sound plan to accelerate delivery. But the program office
also noted, in the immortal words of Mike Tyson, “Everyone has a plan until they get punched in
the face.”

 Slide image received for briefing from F22A Raptor Program Office.

SWAP Study Final Release, 3 May 2019 55

Vignette 3 – Making It Hard to Help:
A Self-Denial of Service Attack for the SWAP Study

Richard Murray

DoD makes use of advisory committees consisting of a mixture of government, industry, and
academic experts, all trying to help. However, the Department can make it extremely difficult for
these groups to function, an example of what we refer to on the Defense Innovation Board (DIB)
as a “self-denial of service attack.”12 The DIB SWAP study is itself a case in point.

<rant>

The DIB Software Acquisition and Practices (SWAP) study clock started ticking when the 2018
NDAA was signed on 12 December 2017. We had our first SWAP discussion at the Pentagon on
16 January 2018, before we had officially been requested by the Under Secretary for Defense
(Acquisition and Sustainment) to start, but knowing this was coming (and using the DIB Science
& Technology [S&T] committee to ramp up quickly). We identified potential subcommittee
members by 12 February, and we were officially charged to carry out the study on 5 April 2018.
The one-year Congressionally-mandated end date was thus set as 5 April 2019. The DIB S&T
subcommittee submitted the list of suggested subcommittee members. Then we started waiting…

On 24 May, after a DIB meeting, one of the SWAP co-chairs found out that there had been no
movement on these positions. He sent a note to the DIB’s Executive Director, expressing
disappointment and reiterating the importance of getting these people on board early in the study.
The Executive Director tried to use this note to push things along. More waiting…

The first activity in which any new member of the SWAP subgroup participated took place on 1
November 2018— a full 30 weeks after our 52-week countdown started and 9 months after we
had identified the people whom we wanted to enlist in to help in our study. Even this took repeated
interventions by the DIB staff and, in the end, only two of the four people who we hoped could
help were able to participate in the study. The timing was such that we had already visited five of
the six programs with which we met, written seven of the eight concept papers that we generated,
and held three of the four public meetings that provided input for our report.

Why did things take so long? These people were ready to help, had served in government
advisory roles in the past, and provided incredibly valuable input in the end (but only in the end).
Maybe we need some sort of “FACA Pre ✓” that allows DoD to make use of people who are willing
to help and all we need to do is ask.

Another example: the SWAP study decided to use Google’s G Suite as the means for writing our
report. It had some nice features for collaboration and several of us were familiar with using it.
Setting up a G Suite site is fast and easy, and a member of the study had previously created a
site in a matter of minutes and had a fully operational, two-factor authenticated set of accounts

12 The DIB first heard this term from one of the military instructors at the Air Force Academy and we now
use it all the time.

SWAP Study Final Release, 3 May 2019 56

up and running in less than a week. It turns out that the Department has the authority to create
official G Suite sites and so we just needed to get permission to use it.

Our request went in ~10 April 2018. The site was created on 8 August 2018, 17 weeks after our
request. As near as we can tell, the only thing that happened during the 4 months that it took to
get the site working was that people said “no” and then other people had to spend time figuring
out why they said no and either convincing them that this really was useful and a good solution
for the study’s needs and/or going above their heads.

A major theme from the beginning of the SWAP study, and more generally in the DIB’s overall
work, has been that DoD technology must move at the speed of (mission) need, faster than our
adversaries and, certainly, not that much slower than what has proven possible and effective in
the private sector. If the Department wants to take advantage of people who can help it be more
effective in development and delivery of technology for improving national security, it should figure
out how to quickly put together groups of people from inside and outside government, provide
them with modern collaboration environments, and let them spend their time providing service to
the Department instead of struggling with the bureaucracy.

</rant>

SWAP study schedule (used for briefings).

SWAP Study Final Release, 3 May 2019 57

Vignette 4 – DDS: Fighting the Hiring Process Instead of Our Adversaries
Sean Brady, Kevin Carter, Justin Ellsworth

In novelist James Patterson and former President Bill Clinton’s political thriller, The President Is
Missing, a terrorist group threatens to unleash cyber-warfare on the Western World, bringing
about the “Dark Ages.” The President (in the story) must sneak away from the White House
incognito, engage in shootouts, survive an ambush on Memorial Bridge, and assemble the best
computer scientists from our government and military to take out the impending computer virus
before it strikes.

At this point, the novel introduces a top “white hat hacker” who joins the President’s team. She
impresses the FBI with her hacking abilities and the Bureau hires her on the spot. In a sensational
thriller that constantly demands suspended disbelief, this was by far the most unbelievable.

There’s no way government hiring works that effectively or efficiently.

We know because we tried.

The Defense Digital Service (DDS) is an organization within the Pentagon tasked with driving a
giant leap forward in the way DoD builds and deploys technology and digital services. One of
DDS’s most visible programs is Hack the Pentagon, the first bug bounty program in the history of
the federal government. Bug bounties (also known as crowd-sourced hacking challenges) allow
private citizens to harness their diverse range of talents to contribute and strengthen our nation’s
security posture in exchange for a monetary reward for finding security issues. Bug bounties are
an integral part of private-sector security strategies at companies including Microsoft, Google,
Twitter, and Facebook.

The winner of one of these Hack the Pentagon challenges was a 17-year-old high school student,
who beat out 600 other invited hackers by reporting 30 unique vulnerabilities to the Department.
After the challenge, he expressed interest in interning so he could help contribute to our nation’s
security outside of the challenges.

DDS staff spent the next 8 months and approximately 200 man hours trying to navigate the hiring
process to bring the hacker onboard. DDS engaged with the Washington Headquarters Service,
the Air Force internship program, and U.S. Army Cyber HR organizations to identify applicable
hiring authorities and, more important, the HR specialists who could help drive the hiring actions
for a non-traditional, but obviously qualified, candidate.

Unfortunately, what we found was a system ill-equipped to evaluate technical expertise
(especially when demonstrated through experience or skill rather than certifications or education)
and resistant to leveraging the full flexibilities and authorities provided.

Twice the hacker’s resume was rejected as insufficient to qualify him at the necessary grade level
for using direct hire authority. Ultimately, the candidate lengthened his resume to a total of five
pages, which a classifier reviewed and determined would qualify him for the General Schedule
(GS)-4 level, which equates to less than $16 per hour. (For what it’s worth, the GS-5 only requires
“experience that provided a knowledge of data processing ... gained in work such as a computer

SWAP Study Final Release, 3 May 2019 58

operator or assistant, [or] computer sales representative…” according to the OPM GS-2210:
Information Technology Management Series General Schedule Qualification Standards). We like
to point out that he would have qualified if he had worked a year at Best Buy.

Oh, and did we mention he landed on TIME’s List of the 25 Most Influential Teenagers of 2018?
He is currently studying computer science at Stanford University.

We recognize that it is unreasonable to expect a classification specialist to understand and
translate the experience listed in a resume into the education, demonstrated knowledge, and
specialized experience requirements that must be met for each grade level in each job series.

The classification specialist may not have known how this particular candidate’s listed experience
developing “mobile applications in IonicJS, mobile applications using Angular, and APIs using
Node.js, MongoDB, npm, Express gulp, and Babel,” met or did not meet the classification
requirements of “experience that demonstrated accomplishment of computer-project assignments
that required a wide range of knowledge of computer requirements and techniques pertinent to
the position to be filled.”

This is why DDS provided a supporting memo to the classifier that identified where the candidate's
resume and classification guide matched. However, the HR office refused to accept the
supporting document despite OPM guidance that “It is entirely appropriate (and encouraged!) to
use Subject Matter Experts (SMEs) outside of HR to rate and rank applicants and determine the
most highly qualified candidates for a position.”

Thankfully, our story, like The President Is Missing, has a happy ending. When it became clear
that we would lose the hacker to a competing offer from the private sector, leaders at some of the
highest levels of the Pentagon intervened and ordered their HR office to make the hire. With
sufficient visibility and the right people assigned, the hacker’s original (one-page) resume was
reviewed and used to hire him at a reasonable but still below-market rate. We were ultimately
able to hire him, but the process required escalation and is not scalable for more than a small
number of hires.

The hacker, now 18, joined DDS as an employee during the summer of 2018 and during that time
identified numerous vulnerabilities that threatened the security of information and potentially the
safety of our nation.

His story was not isolated to one HR specialist or one service. As a Department, we made it as
hard as possible for him to join (all while the private sector offered higher salaries and housing
stipends). Hiring him did not require a new law or regulation; it required an understanding of his
technical abilities, trust in those who evaluated him, and leadership that prioritizes people over
process.

SWAP Study Final Release, 3 May 2019 59

Vignette 5 – Kessel Run: The Future of Defense Acquisitions Is #AgileAF
Dan Ward

I’ve seen the future, and it’s #agileAF.

That’s the hashtag used by an Air Force software
company known as Kessel Run—the “AF” stands for Air
Force, by the way. And I did say “software company,”
which is how members of this military unit describe their
organization. Kessel Run does not look like any other
program office the Air Force has ever seen. That is its
great strength. That is its great peril. And that is why it is
the future.

What’s so great about Kessel Run? For starters, it
delivers. As one example from many, in less than 130
days Kessel Run fielded an accredited Secret Internet
Protocol Router (SIPR) cloud-native DevOps platform at
Al Udeid Air Base, then replicated the instance at Shaw Air Force Base and fielded another
DevOps platform at Osan Air Base in Japan. Don’t worry if that last sentence sounded like
technobabble—the point is they put stuff into the field quickly. In contrast, the previous program
charged with addressing this need (which went by the catchy name “AOC 10.2”) spent $430
million over 10 years before being terminated “without delivering any meaningful capability,” to
quote Senator John McCain. But while Kessel Run’s ability to field operational software is
noteworthy, its organizational achievement and the culture the team has built just might be the
real breakthrough.

It turns out disruptive new technologies do not merely require cutting-edge tech. They also require
new organizational architectures, to use Professor Rebecca Henderson’s term, and very specific
cultural features.

Easier said than done, of course. Building and sustaining these innovative structures inside a
large legacy organization like the U.S. military requires replacing existing standards and norms.
That’s even harder than it sounds and is why so many large companies fail to make the switch.

Despite the difficulty, the Kessel Run team seems to have cracked the code and built a unique
organization that operates at warp speed. The most visible difference between Kessel Run and
business-as-usual military program offices is their location. Rather than spending all their time on
the military base they are technically assigned to, Kessel Run personnel operate from a brightly
lit We Work office in downtown Cambridge, MA. The conference rooms have Star Wars–themed
names instead of Mil-Standard room numbers. The walls are covered in multi-colored sticky
notes. The view of Boston is spectacular. You get the picture.

Only slightly less visible is Kessel Run’s approach to contracting. Instead of handing the work
over to a major defense contractor, team members built a collaborative partnership with a small-
ish software company named Pivotal. Together they use DevOps methods like pair programming,

Kessel Run’s lab director welcomes
new engineers. [U.S. Air Force
photo by Todd Maki]

https://www.defensenews.com/air/2017/07/13/air-force-cancels-air-operations-center-10-2-contract-starts-new-pathfinder-effort/
http://dimetic.dime-eu.org/dimetic_files/HendersonClarkASQ1990.pdf

SWAP Study Final Release, 3 May 2019 60

where Air Force coders work side-by-side with Pivotal coders to produce software that runs on
classified military systems and supports real-world military operations.

Where people sit and how they collaborate are just the tip of the iceberg. The Kessel Run culture
is the product of hundreds of thoughtful design decisions that continually reinforce principles of
learning, collaboration, critical thinking, and agility. The details of these decisions are beyond the
scope of this short vignette, but the fact that Kessel Run continues to do the hard work of
deliberately crafting and maintaining its culture is absolutely foundational to its success story.

That story is happening right now, so saying “the future is #agileAF” is actually an observation
about the present. Kessel Run’s approach is what right looks like today. Kessel Run is the new
standard of military acquisition excellence, and already the other Services are starting to follow
suit. Just last month the U.S. Naval Institute’s blog had a post titled The Navy’s Kessel Run. When
your program office’s name gets used in a headline like that, it’s a sure sign you’re doing
something right.

Some skeptical commentators have expressed concern about the risks inherent in a high-speed
operation like Kessel Run. In response, let’s hear from the four-star commander of U.S. Strategic
Command, General John Hyten. He’s responsible for the nation’s nuclear arsenal and is precisely
the type of serious, thoughtful, risk-averse leader we want in charge of nuclear weapons. If anyone
has a definitive professional opinion on Kessel Run’s risk profile, it’s General Hyten.

On several occasions General Hyten has stated that what keeps him up at night is the thought
that the U.S. military’s technology community has “lost the ability to go fast.” This inability to move
quickly increases the likelihood of operational shortfalls and degrades our nation’s overall defense
posture. In General Hyten’s assessment, going too slow is far riskier than going too fast. He
sounds quite comfortable with Kessel Run’s pace.

In a similar vein, Secretary of the Air Force Heather Wilson submitted a report to Congress in
October 2018 that described Kessel Run’s achievements to date. She wrote “The use of Agile
DevOps methodologies … is proving successful and we are able to rapidly deliver cloud native
applications that increase operational utility. … We believe we have demonstrated the ability to
continuously deliver software that adds value to the warfighter. ” (emphasis added.)

So the question is not whether the Kessel Run team delivers good results or addresses the needs
of the operational community. It clearly does. Instead, the question is how long it will take the
Department of Defense to adopt this organizational innovation on a larger scale. How long will
DoD wait before making Kessel Run-style organizations and culture the default rather than the
exception?

Replicating the Kessel Run culture requires more than giving all your conference rooms Star
Wars-themed names and putting military personnel into civilian clothes. In fact, the best way to
replicate the Kessel Run culture is to not replicate it exactly. The wisest imitators will use Kessel
Run’s example for illumination, not imitation. They will learn from Kessel Run’s practices, not
simply cut and paste them onto existing organizational structures. The wisest imitators will commit
to having the difficult, ongoing conversations about values, attitudes, and beliefs that lead to

https://blog.usni.org/posts/2019/01/03/the-navys-kessel-run
https://dod.defense.gov/News/Article/Article/1386361/us-must-move-faster-or-risk-losing-lead-in-space/

SWAP Study Final Release, 3 May 2019 61

genuine culture shifts. They will do the hard work of establishing and maintaining a healthy culture
that unleashes people’s talent and enables them to do their best work.

Kessel Run is not perfect, of course. It has collected a number of critics and skeptics alongside
its fans and supporters. Interestingly, no critics see the project’s shortcomings more clearly and
pointedly than the Kessel Run members themselves. The team members are very aware they are
still learning, still experimenting, still making mistakes and identifying opportunities for
improvement. They are the first to tell you that Kessel Run has problems and struggles. They are
quick to agree with some of their critics about ways the program can and should improve. That is
the thing I admire most about this team. That just might be the most important practice for the rest
of us to follow. And that is precisely why the future is #agileAF.

Whiteboard on which tanker refueling operations
were planned. [Photo by U.S. Air Force]

The tanker refueling planning app that replaced
the AOC’s whiteboard. [Photo by U.S. Air Force]

Air Force Kessel Run Headquarters in Boston, MA. [U.S. Air Force photo by J.M. Eddins Jr.]

https://www.dvidshub.net/image/4879333/changing-story

SWAP Study Final Release, 3 May 2019 62

Vignette 6 – JMS: Seven Signs That Your Software (Program) Is in Trouble
Richard Murray

The DIB SWAP study visited the JMS (JSpOC [Joint Space Operations Center] Mission System)
program in August 2018. The JMS team was open and cooperative, and the people working on
the project were highly capable and well-intentioned. At the same time, our assessment of the
program was that it was doomed to failure. Because the JMS program was restructured after our
visit, we felt it was OK to spell out the problems as examples of what can go wrong.

While there were many issues that led to the failure of the JMS program, the following seven are
ones that are not a function of that program per se, but rather of the process that created it. We
thus call these out as general things to look for as indications that your software (program) may
be in trouble.

1. The problem is being made harder than it needs to be. JMS increment 2 had a budget of
just under $1B. The basic function of the JMS system was to track objects in space. While there
are engineering challenges to doing this with the proper precision, the basic problem is not that
hard. Our sense was that the project could be converted to an “app” within AOC Pathfinder, or
something equivalent. Assign 20–30 [50? 100?] programmers (+ 20% program management,
administration) to work on it for 3 years at $10–20M/year, with first capability due in 6 months and
increments every 2 weeks (based on user feedback). Interface to existing data sources (via
software interfaces), run in the cloud, and use a scalable architecture that can get to 1M objects
in the next year or two. Make sure that the app architecture can accept a commercial product if
one is available that meets the needs of the user (there were some indications this might have
already been happening). Target budget: $10–20M/year for first 5 years, $5–15M/year in
perpetuity after that.

2. The requirements are outdated. Many of the requirements for JMS increment 2 appeared to
trace back to its original inception circa 2000 and/or its restart in 2010. Any software program in
which a set of software requirements was established more than 5 years ago should be shut down
and restarted with a description of the desired end state (list of features with specifications) and
a prioritization of features that should be targeted for simplest usable functionality.

3. The program organizational structure is designed to slow things down. Any software
program with more than one layer of indirection between the prime contractor/integrator and the
companies doing the engineering work should be shut down and restarted with a set of level-of-
effort–style contracts that go directly from the system integrator to the companies delivering code.
The system integrator should own the architecture, including the design specifications for the
components that plug into that architecture.

4. The program contract structure is designed to slow things down even more. The program
had at least a dozen contracts with all sorts of small companies and National Labs. It was
apparently treated as a COTS integration problem with lots of pieces, but it was implemented in
a way that seemed designed to ensure that nobody could make any progress.

SWAP Study Final Release, 3 May 2019 63

5. The program is implementing “waterfall with sprints” (otherwise known as Agile BS).
The program was implementing “sprints” of ~6–9 months (Agile BS detector alert!). Sprints had
hundreds of tasks spread across six development teams. Just coordinating was taking weeks.
For a while the program had used 4-week sprints, but infrastructure was not available to support
that cadence. Test happened after delivery of software, with very little automation.

6. The program management office is too big and does not know enough about software.
We were told there were 200–260 FTEs in the program office. The overall program management
should be limited to 10–20% of the size of the program so that resources are focused on the
development team (including system architects, user interface designers, programmers, etc.),
where the main work gets done. The program office must have expertise in software programs
so that it is able to utilize contract and oversight structures that are designed for software (not
hardware).

7. OT&E is done as a tailgate process. As an ACAT1 program, JMS was mandated to conduct
operational test, a process that nominally required the program to freeze its baseline, do the tests,
and then wait 120 days for report. The Operational User Evaluation conducted in early 2018 was
terminated early by the Air Force due to poor performance of the system. The OT&E process
being used by the program added information to support the termination decision, but it is
important to note that had the program not been terminated the tailgate nature of the evaluation
was one that would have added further delays.

The JMS program has since undergone major changes to address the issues above, so the
criticisms here should be taken as an example of some of the signs that a program is in trouble.

JMS contract structure. [Photo courtesy of former JMS program office]

SWAP Study Final Release, 3 May 2019 S0

Software Is Never Done:
Refactoring the Acquisition Code for Competitive Advantage

Defense Innovation Board, 3 May April 2019

J. Michael McQuade and Richard M. Murray (co-chairs)
Gilman Louie, Milo Medin, Jennifer Pahlka, Trae' Stephens

Supporting Information

This document contains the supporting information for the Defense Innovation Board’s (DIB’s)
Software Acquisition and Practices (SWAP) study.

Contents
Appendix A. Draft Implementation Plan (Recommendation Summaries) S1

● Background, Desired State, Congressional Role
● List of Actions, Related Recommendations, Previous Recommendations

Appendix B. Legislative Opportunities in Response to 2016 NDAA Section 805 S58

Appendix C. An Alternative to P-Forms and R-Forms: How to Track Software Programs S64

Appendix D. Frequently Asked Questions (FAQs) S71

Appendix E. DIB Guides for Software S75

Appendix F. SWAP Working Group Reports (DIB Remix) S130
● Acquisition Strategy
● Appropriations
● Contracting
● Data and Metrics
● Infrastructure

● Requirements
● Security Certification/Accreditation
● Sustainment and Modernization
● Test and Evaluation
● Workforce

Appendix G. Analysis the Old-Fashioned Way: A Look at Past DoD Software Projects S162
● Software Development Project Analyses
● Software Development Data Analyses

Appendix H. Replacing Augmenting CAPE with AI/ML S178

● Software Life-Cycle Prediction Model
● Software Development Forecasting Model
● Investigation of Opportunities for Analytic Intervention

Appendix I. Acronyms and Glossary of Terms S190

Appendix J. Study Information S198

SWAP Study Final Release, 3 May 2019 S1

Appendix A: Draft Implementation Plan

The following pages contain summaries for each recommendation that give more detail on the
rationale, supporting information, similar recommendations, specific action items, and notes on
implementation. The beginning of each recommendation summary includes the recommendation
statement, proposed owner, background information, description of the desired state, proposed
role for Congress, and a short list of actions describing how the recommendation might be
implemented. The remainder of the summary contains a list of recommendations from the DIB
Guides (contained in Appendix E of the supporting information), a list of recommendations from
the working group reports (Appendix F of the supporting information), and some related
recommendations from previous reports.

The recommendations listed here are
relatively decoupled, but there are
some dependencies between them, as
shown to the right. In figure A.1, an
arrow leading from one
recommendation toward a second
recommendation means that the first
implementation depends at least
somewhat on the implementation of
the second. Hence by choosing one
recommendation and following the
arrows, the list of all recommendations
that should also be implemented can
be obtained.

The recommendations of the report are
broken up into four primary lines of
effort:

A. Refactor statutes, regulations, and processes for software

B. Create and maintain cross-program/cross-service digital infrastructure

C. Create new paths for digital talent (especially internal talent)

D. Change the practice of how software is procured and developed

For each of the lines of effort, we give a set of two or three primary recommendations (bold) and
two to four additional recommendations (see Chapter 5 for insights).

Figure A.1. Interdependency of recommendations.

SWAP Study Final Release, 3 May 2019 S2

Primary Recommendation A1
New Acquisition Pathway

Line of Effort Refactor statutes, regulations, and processes for software.
Recommendation Establish one or more new acquisition pathways for software that

prioritize continuous integration and delivery of working software in
a secure manner, with continuous oversight from automated
analytics.

Stakeholders A&S, HASC/SASC, USD(C), CAPE, DOT&E, R&E/DT, SAE, Service FM
& PA&E, Joint Staff

Background Current law, regulation, policy, and internal DoD processes make
DevSecOps software development extremely difficult, requiring
substantial and consistent senior leadership involvement. Consequently,
DoD is challenged in its ability to scale DevSecOps software development
practices to meet mission needs.

Desired State Tailored, software-specific pathways that provide guidance to acquisition
professionals for navigating the acquisition and requirements life cycle to
rapidly deliver capabilities. Each pathway streamlines the processes,
reviews, and documents based on the type of IT/SW capability. Programs
choosing these pathways have the ability to rapidly field and iterate new
functionality in a secure manner, with continuous oversight based on
automated reporting and analytics, and utilizing IA-accredited commercial
development tools. Rapid acquisition authority should be available for
software already in use and accredited, especially when purchased as a
capability delivery (as a service). Over time, this becomes the default
choice for software and software-intensive programs/program elements.

Role of Congress This acquisition pathway should become the primary pathway that DoD
chooses to use for software and software-intensive programs and should
provide Congress with the insight required to oversee software projects
that move at a much faster pace than traditional HW programs, with
traditional metrics and milestones replaced by more software-compatible
measures of progress.

Draft Implementation Plan Lead Stakeholder Target Date
A1.1 (optional) Submit legislative proposal using Sec 805 to

propose new acquisition pathways for two or more
classes of software (e.g., application, embedded),
optimized for DevSecOps.

USD(A&S), in
coordination with
USD(C) and CAPE

Q3 FY19

A1.2 Create new acquisition pathway(s) for two or more
classes of software, optimized for DevSecOps (based on
A2c.1 or Appendix B.1).

HASC, SASC FY20 NDAA

A1.3 Develop and issue a Directive-Type Memorandum (DTM)
for the new software acquisition pathway.

USD(A&S) Q1 FY20

A1.4 Issue Service-level guidance for new acquisition
pathway.

SAEs Q2 FY20

SWAP Study Final Release, 3 May 2019 S3

A1.5 Select 5 initial programs using modern software
development (DevSecOps) to convert to or use new
software acquisition pathway.

USD(A&S), with
SAEs

Q2 FY20

A1.6 Develop and implement training at Defense Acquisition
University on new software acquisition pathway for all
acquisition communities (FM, Costing, PM, IT, SE, etc.).

USD(A&S) Q3 FY20

A1.7 Convert DTM to DoD Instruction (perhaps 5000.SW),
incorporating lessons learned during initial program
implementation.

USD(A&S) Q4 FY20

SWAP working group inputs (reflected in Appendix F) related to this recommendation

Acq Define software as a critical national security capability under Section 805 of FY16 NDAA “Use
of Alternative Acquisition Paths to Acquire Critical National Security Capabilities.”

Acq Create an acquisition policy framework that recognizes that software is ubiquitous and will be
part of all acquisition policy models.

Acq Create a clear, efficient acquisition path for acquiring non-embedded software capability.
Deconflict supplemental policies.

Acq Develop an Enterprise-level Strategic Technology Plan that reinforces the concept of software
as a national security capability and recognizes how disruptive technologies will be introduced
into the environment on an ongoing basis.

Acq Additionally, take all actions associated with Rec A2a to refactor and simplify those parts of Title
10, DoD 5000 and other regulations and processes that are still in force for software-intensive
programs.

Related recommendations from previous studies
DSB87 Rec 13: The Undersecretary of Defense (Acquisition) should adopt a four-category

classification as the basis of acquisition policy [standard (COTS), extended (extensions of
current systems, both DoD and commercial), embedded, and advanced (advanced and
exploratory systems)].

DSB87 Rec 14: USD(A) should develop acquisition policy, procedures, and guidance for each
category.

DSB09 The USD(AT&L) should lead an effort, in conjunction with the Vice Chairman, Joint Chiefs of
Staff, to develop new, streamlined, and agile capabilities (requirements) development and
acquisition processes and associated policies for information technology programs.

SWAP Study Final Release, 3 May 2019 S4

Primary Recommendation A2
New Appropriation Category

Line of Effort Refactor statutes, regulations, and processes for software.
Recommendation Create a new appropriation category for software capability delivery

that allows (relevant types of) software to be funded as a single
budget item, with no separation between RDT&E, production, and
sustainment.

Stakeholders A&S, HAC-D/SAC-D, HASC/SASC, USD(C), CAPE, SAE, Service FM &
PA&E, FASAB, OMB

Background Current law, regulation, and policy treat software acquisition as a series
of discrete, sequential steps; accounting guidance treats software as a
depreciating asset. These processes are at odds with software being
continuously updated to add new functionality, and they create significant
delays in fielding user-needed capability.

Desired State Appropriations for software and software-intensive programs use a Major
Force Program (MFP) category that provides a single budget to support
full life cycle costs of software, including development, procurement,
assurance, deployment, and continuous improvement. Programs are
better able to prioritize how effort is spent on new capabilities versus
fixing bugs/vulnerabilities, improving existing capabilities, etc. Such
prioritization can be made based on warfighter/user needs, changing
mission profiles, and other external drivers, not constrained by available
sources of funding.

Role of Congress This should become the primary pathway that Congress uses to fund
software and software-intensive programs and should provide Congress
with the insight required to oversee software projects that move at a
much faster pace than traditional HW programs, with traditional metrics
and milestones replaced by more software-compatible measures of
progress.

Draft Implementation Plan Lead Stakeholder Target Date
A2.1 (optional) Submit legislative proposal using Sec 805 to

create a new appropriations category for software and
software-intensive programs.

USD(A&S), with
USD(C) and CAPE

Q3 FY19 for
FY20 NDAA

A2.2 Create new appropriation category for software-intensive
programs, with appropriate reporting and oversight for
software (based on Action A2.1 or Appendix B.1).

HAC-D, SAC-D,
with OSD, HASC,
SASC

FY20
NDAA,
FY20

budget
A2.3 Select initial programs using DevSecOps to convert to or

use new SW Appropriation in FY20.
USD(A&S), with
Service Acquisition
Executives

Q4 FY19

A2.4 Define budget exhibits for new SW appropriation
(replacement for P- and R-Forms; see Appendix C).

USD(A&S), with
USD(C), CAPE,
HAC-D, SAC-D

Q4 FY19

SWAP Study Final Release, 3 May 2019 S5

A2.5 Change audit treatment of software with these goals: (1)
separate category for software instead of being
characterized as property, plant, and equipment; (2)
default setting that software is an expense, not an
investment; and (3) “sustainment” is an integrated part of
the software life cycle.

FASAB, with
USD(A&S) and
USD(C)

End FY20

A2.6 Make necessary modifications in supporting PPB&E
systems to allow use and tracking of new software
appropriation.

USD(C) and CAPE Q1 FY21

A2.7 Ensure programs using new software appropriation
submit budget exhibits in the approved format.

SAE with USD(C),
CAPE

FY 22 POM

SWAP concept paper recommendations related to this recommendation
10C Budgets should be constructed to support the full, iterative life cycle of the software being

procured with amount proportional to the criticality and utility of the software.
Visits Construct budget to support the full, iterative life cycle of the software.

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Acq Revise 10 USC 2214 to allow funding approved by Congress for acquisition of a specific

software solution to be used for research and development, production, or sustainment of that
software solution, under appropriate conditions.

App A new multi-year appropriation for Digital Technology needs to be established for each Military
Defense Department and the Fourth Estate.

App Components will program, budget, and execute for information and technology capabilities from
one appropriation throughout life cycle rather than using RDT&E, procurement, or O&M
appropriations—often applied inconsistently and inaccurately—allowing for continuous
engineering.

Con Congress establishes new authority for contracting for SW development and IT modernization.
M&S Revise 10 USC 2460 to replace the “software maintenance” with “software sustainment” and use

a definition that is consistent with a continuous engineering approach across the life cycle.
M&S A DoD Working Group should be established to leverage ongoing individual Service efforts and

create a DoD contracting and acquisition guide for software and software sustainment patterned
after the approach that led to creation of the DoD Open Systems Architecture Contracting
Guide.

M&S Acquisition Strategy, RFP/Evaluation Criteria, and Systems Engineering Plan should address
software sustainability and transition to sustainment as an acquisition priority.

Con Manage programs at budget levels, allow programs to allocate funds at project investment level.
Con Work with appropriators to establish working capital funds so that there is not pressure to spend

funds sooner than when you’re ready (iterative contracts may produce more value with less
money).

Related recommendations from previous studies
GAO15 When assigning resources to all activities, the schedule should reflect the resources (labor,

materials, travel, facilities, equipment, and the like) needed to do the work, whether they will be
available when needed, and any constraints on funding or time.

GAO17 Hold suppliers accountable for delivering high-quality parts for their products through activities
including regular supplier audits and performance evaluations of quality and delivery.

SWAP Study Final Release, 3 May 2019 S6

GAO17 Prioritize investments so that projects can be fully funded and it is clear where projects stand in
relation to the overall portfolio.

CSIS18 Performance Based Logistics (PBL) contracts should have a duration that allows for tuning and
re-baselining with triggered options and rolling extensions.

Sec809 Rec. 41: Establish a sustainment program baseline, implement key enablers of sustainment,
elevate sustainment to equal standing with development and procurement, and improve the
defense materiel enterprise focus on weapon system readiness.

Sec809 Rec. 42: Reduce budgetary uncertainty, increase funding flexibility, and enhance the ability to
effectively execute sustainment plans and address emergent sustainment requirements.

SWAP Study Final Release, 3 May 2019 S7

Additional Recommendation A3
Metrics for Cost Assessment and Performance Estimates

Line of Effort Refactor statutes and regulations for software.
Recommendation Require cost assessment and performance estimates for software

programs (and software components of larger programs) of
appropriate type be based on metrics that track speed and cycle time,
security, code quality, and functionality.

Stakeholders CAPE, CMO, USD(A&S), Service CMOs and SAEs
Background Current software cost estimation and reporting processes and procedures in

DoD have proven to be highly inaccurate and time consuming. New metrics
are required that match the DevSecOps approach of continuous capability
delivery and maintenance and provide continuous insight into program
progress.

Desired State Program oversight will re-focus on the value provided by the software as it is
deployed to the warfighter/user and will rely more heavily on metrics that
can be collected in a (semi-)automated fashion from instrumentation on the
DevSecOps pipeline and other parts of the infrastructure. Specific metrics
will depend on the type of software rather than a one-size-fits-all approach.

Role of Congress Congress needs to emphasize the need for new software acquisition
reporting that focuses on value provided for the investment in software and
frequency of deployments to the warfighter/user. Congress needs to work
with CAPE and USD(A&S) to provide feedback on meaningful content and
level of detail in reporting.

Draft Implementation Plan Lead Stakeholders Target date
A3.1 Identify (or hire) a small team (3-4) programmers to implement

software for automated collection and analysis of metrics and
provide them with a modern development environment.

CAPE, DDS Q4 FY19

A3.2 Identify low-level metrics that are already part of standard
commercial development environments (see Appendix C for
reporting approach and Appendix E.2 (DIB’s “Metrics for
Software”) for initial lists).

CAPE, SAO MVP1 Q4
FY19, then
quarterly

A3.2a Speed and cycle time: launch → initial use, cycle time Dev team, users

A3.2b Code quality: unit test coverage, bug burn-rate, bugs-in-
test:bugs-in-field

Dev team, users

A3.2c Security: patch → field, OS upgrade → field, HW/OS age Dev team, users

A3.2d Functionality: user satisfaction, number/type of features/cycle Dev team, users

A3.2e Cost: head count, software license cost, compute costs Dev team, users

A3.3 Identify 3-5 ongoing programs that are collecting relevant
metrics and that partner with CAPE to collect and use data.

CAPE, A&S, CMO,
SAEs

In parallel
with A6.2

1 Minimum viable product (first useful iteration)

SWAP Study Final Release, 3 May 2019 S8

A3.4 Create a mechanism to transfer and process low-level metrics
from development team to PMO on a continuous basis with
selectable levels of resolution across the program.

CAPE, SAEs, PMO MVP Q4
FY19, then
quarterly

A3.5 Begin reporting metrics to Congress as part of annual
reporting; iterate on content, level, format.

CAPE, Comp, A&S FY2020

A3.6 Use initial results to establish expectations for new proposed
software or software-intensive projects and integrate use of
new cost and performance estimates into contract selection.

A&S, SAEs, CAPE FY2020

A3.7 Establish ongoing capability within CAPE to update metrics on
continuous basis, with input from users (of the data).

CAPE FY2021

A3.8 Identify and eliminate remaining uses of ESLOC as metric for
cost and schedule estimation of software/software-intensive
programs.

CAPE, SAEs FY2022

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Con Revise estimation models - source lines of code are irrelevant to future development efforts,

estimations should be based on the team size and investment focused (Cultural).

Related recommendations from previous studies
SEI01 Effort Estimation:

• Utilize most likely effort estimates in proposals and status reports;
• Find ways to promote the use of accurate effort estimation and productivity evaluation;
• Lowest cost is not equivalent to best value. Question outliers.

OSD06 Adjust program estimates to reflect “high confidence”—defined as a program with an 80 percent
chance of completing development at or below estimated cost—when programs are baselined in
the Stable Program Funding Account.

SEI10 Don’t require PMO to adopt contractors’ estimate for the program—or else use
the difference as PM “reserve.”

SEI10 Change from traditional 50% estimation confidence level to 80% level.

SEI10 DoD should consider use of Vickrey “second price” auction mechanism for
acquisition proposal bidding.

SEI15 Use the government’s cost estimates (using perhaps an 80% confidence level) rather than
contractors’ estimates as the basis for program budgets and place the difference (if the
government’s estimate is larger) in a reserve fund available to program managers with sufficient
justification. Contractors’ estimates should be acquired using mechanisms that promote accurate
estimates, e.g., using Vickrey auctions, the Truth-Revealing Incentive Mechanism (TRIM), or more
standard methods of review and acceptance by independent third parties.

DSB18 Rec 3b: The MDA with the Cost Assessment and Program Evaluation office (CAPE), the
USD(R&E), the Service Cost Estimators, and others should modernize cost and schedule
estimates and measurements.

DSB18 Rec 3b.1: [DoD] should evolve from a pure SLOC approach to historical comparables as a
measurement, and should adopt the National Reconnaissance Office (NRO) approach
(demonstrated in Box 5) of contracting with the defense industrial base for work breakdown
schedule data to include, among others, staff, cost, and productivity.

DSB18 Rec 3c: The MDA should immediately require the PM to build a program-appropriate framework
for status estimation.

SWAP Study Final Release, 3 May 2019 S9

Additional Recommendation A4
Simplify Laws and Policies

Line of Effort Refactor statutes and regulations for software.
Recommendation Refactor and simplify Title 10, DFARS, and DoDI 5000.02/5000.75 to

remove statutory, regulatory, and procedural requirements that
generate delays for acquisition, development, and fielding of software
while adding requirements for continuous (automated) reporting of
cost, performance (against updated metrics), and schedule.

Stakeholders USD(C), CAPE, SAE, Service FM & PA&E, Joint Staff
Background Current law, regulation, policy, and internal DoD processes make modern

software development extremely difficult, requiring substantial and
consistent senior leadership involvement. Consequently, DoD is challenged
in its ability to scale modern software development practices to meet
mission needs. Recommendation A1 (new acquisition pathway) provides a
pathway that is optimized for software, but it is also possible to modify
existing statutes, regulations, and processes to remove barriers for
software.

Desired State Programs have the ability to rapidly field and iterate new functionality in a
secure manner, with continuous oversight based on automated reporting
and analytics, and utilizing IA-accredited commercial development tools.
Congress has better insight into the status of software programs through
improved reporting of relevant metrics (see also Recommendations A3 and
D4 on metrics).

Role of Congress Work with DoD to review current statutes and evaluate their effectiveness
for different types of software, removing barriers that add time and interfere
with the continuous nature of modern software development. See Appendix
F for a list of issues to consider.

Draft Implementation Plan Lead Stakeholders Target Date
A4.1 Submit legislative proposal(s) to simplify Title 10 for

software (see also: Sec 809 Panel report).
USD(A&S) Q3 FY19

A4.2 Convene working group with stakeholders and develop
and issue a Directive-Type Memorandum (DTM) for the
new simplified software acquisition process.

USD(A&S) Q1 FY20

A4.3 Issue Service-level guidance for new simplified software
acquisition process.

SAE Q1 FY20

A4.4 Identify initial set of programs using modern software
development methods to convert to or utilize new,
simplified software acquisition process.

USD(A&S), with
SAEs

Q1 FY20

A4.5 Convert DTM to DoD Instruction, incorporating lessons
learned during initial program implementation.

USD(A&S) Q1 FY20

A4.6 Develop and implement training at Defense Acquisition
University on new, simplified software acquisition process
for all acquisition communities (FM, Costing, PM, IT, SE,
etc.).

USD(A&S) Q1 FY20

SWAP Study Final Release, 3 May 2019 S10

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Acq Ensure appropriate integration of a data strategy and the Department’s Cloud Strategy. Examine

a Steering Committee approach for management.

Acq Examine the organizational structure with the intent of achieving a more responsive and flat
organizational model that de-conflicts roles and responsibilities between the DoD CIO, the
USD(A&S), and the CMO regarding software.

Acq Re-focus the software acquisition workforce on teaming and collaboration, agility, improved role
definition, career path advancement methods, continuing education and training opportunities,
incentivization, and empowerment.

Acq Increase flexibility and agility for software programs by eliminating mandated content for
acquisition strategies and authorities in Section 821 of the FY16 NDAA, except for MDAPs.

Acq Eliminate hardware-centric cost, fielding, and performance goals in 10 USC 2488 (established by
Sec 807 of the FY17 NDAA) for software-intensive programs.

Acq Eliminate Nunn-McCurdy breaches (10 USC 2433) for software-intensive programs and replace
with continuous evaluation of software performance metrics.

Acq Remove statutory definition of “major system” for software-intensive programs in 10 USC 2302
and 2302d to remove confusion, since most software in weapons systems inherently functions
together to fulfill a mission need.

Acq Develop language for 10 USC 2366 that allows exemption for software-intensive programs,
where DOT&E must justify adding the program for oversight with the MDA and must streamline
the process.

Acq Only require DOT&E oversight for software-intensive programs when requested by the SAE,
USD(A&S), or Congress, or if the program is an MDAP.

Acq For the Fourth Estate, combine all three authorities for DBS under the DoD CMO. After one year,
conduct assessment and make a determination if this should be applied to the Services as well.

Acq Eliminate the separate annual funding certification process for defense business system from 10
USC 2222 or require that funding certification be merged in to the PPBE process.

Acq Replace annual configuration steering board (CSBs) for software-intensive programs with board
(or equivalent entities) established by the CAE, PEO, or PM [FY09 NDAA Sec 814; DoDI
5000.02].

Acq Expand the FAR 39 (Acquisition of IT) to allow for one area to drive technology purchases.
Unless otherwise stated, no other FAR rules would apply.

Acq Rewrite FMR Volume 2A, Chapter 1, Section 010212(B) to [1] acknowledge that, for the purpose
of modifying or enhancing software, there is no technically meaningful distinction between
RDT&E, Procurement, and O&M; [2] eliminate the $250,000 barrier between expenses and
investments (i.e., stop explicitly tying to a dollar threshold, the determination of whether software
is an expense or an investment).

Acq Revise or eliminate DoDI 8330.01 to eliminate the following elements for software-intensive
programs: [1] NR KPP required; [2] DoD-specific architecture products in the DoDAF format that
are labor intensive and of questionable value; [e] Interoperability Support Plans (ISPs) required,
where DoD CIO can declare any ISP of “special interest”; [2] requirement of DT authority to
provide assessments at MS C; [5] mandates JITC to do interoperability assessments for IT with
“joint, multinational, and interagency interoperability requirements.”

SWAP Study Final Release, 3 May 2019 S11

Acq Revise PfM policy (DoDD 7045.20) to consider the role of data and metrics, as well as additional
portfolios (like NC3), and determine authority for the policy.

Con Separate Contract requirements (scope, PoP, and price) from technical requirements (backlog,
roadmap, and stories).

Con Use SOO vs. SOW to allow the vendor to solve the objectives how they are best suited.

Con Establish clear and intuitive guidelines on how and when to apply existing clauses.

Con Have standard clause applications for each of the above that must be excepted vs. accepted.

D&M Congress could establish, via an NDAA provision, new data-driven methods for governance of
software development, maintenance, and performance. The new approach should require on-
demand access to standard (and perhaps real-time) data with reviews occurring on a standard
calendar, rather than the current approach of manually developed, periodic reports.

M&S Title 10 USC 2460 should be revised to replace the term “software maintenance” with the term
“software sustainment” and use a definition that is consistent with a continuous engineering
approach across the life cycle.

Req The Joint Staff should consider revising JCIDS guidance to focus on user needs, bypassing the
JCIDS process as needed to facilitate rapid software development. Guidance should specifically
account for user communities (e.g., Tactical Action Officer (TAO), Maritime Operations Center
(MOC) director) that do not have one specific PoR assigned to them, but use multiple systems
and data from those systems to be effective.

Req The Joint Staff should consider revising JCIDS guidance to separate functionality that needs high
variability from the functionality that is deemed “more stable” (e.g., types of signals to analyze vs.
allowable space for the antenna). Then implement a “software box” approach for each one in
which the contours of the box are shaped by the functionality variability.

Req The Joint Staff should consider revising JCIDS guidance to document stable concepts, not
speculative ideas. Acknowledge that software requirement documents will iterate, iterate, iterate.
JCIDS must change from a “one-pass” mentality to a “first of many” model that is inherently agile,
delegating approval to the lowest possible level.

Related recommendations from previous studies
DSB87 Rec 21: DoD should examine and revise regulations to approach modern commercial practice

insofar as practicable and appropriate.

NPS16a Program offices spend far too much time generating paperwork and navigating the
bureaucracy rather than thinking creatively about program risks, opportunities, and key
elements of their strategies.

NDU17 Develop and maintain core competencies in diverse acquisition approaches and increase the
use of venture-capital-type acquisitions, such as Small Business Innovative Research (SBIR),
Advanced Concept Technology Development (ACTD), and Other Transaction Authority
(OTA), as mechanisms to draw in non-traditional companies.

NDU17 Encourage employees to study statutes and regulations and explore innovative and
alternative approaches that meet the statutory and regulatory intent.

Sec809 Rec. 62: Update the FAR and DFARS to reduce burdens on DoD’s commercial supply chain
to decrease cost, prevent delays, remove barriers, and encourage innovation available to the

SWAP Study Final Release, 3 May 2019 S12

Military Services.

Sec809 Rec. 74: Eliminate redundant documentation requirements or superfluous approvals when
appropriate consideration is given and documented as part of acquisition planning.

Sec809 Rec. 75: Revise regulations, instructions, or directives to eliminate non-value-added
documentation or approvals.

Sec809 Rec. 90: Reorganize Title 10 of the U.S. Code to place all of the acquisition provisions in a
single part, and update and move acquisition-related note sections into the reorganized
acquisition part of Title 10.

SWAP Study Final Release, 3 May 2019 S13

Additional Recommendation A5
Streamlined Processes for Business Systems

Line of Effort Refactor statutes and regulations for software.
Recommendation Create streamlined authorization and appropriation processes for

defense business systems (DBS) that use commercially available
products with minimal (source code) modification.

Stakeholders CMO, USD(A&S), Service CMOs, SAEs, DoD CIO
Background Current DoD business processes are minimally standardized due to a high

number of legacy systems that inhibit business process reengineering. In
addition, solicitation for new business systems often insists on
customization because DoD is “different,” resulting in hard-to-maintain
systems that become obsolete (and possibly insecure) quickly.

Desired State DoD uses standard commercial packages for enterprise and business
services, changing its processes to match those of large industries,
allowing its systems to be updated and modified on a much faster cadence.
The only specialized defense business systems should be those for which
there is no commercial equivalent (to include cases in which minor
modifications would be required) and there is a funded internal capability to
maintain and update the software at a near-commercial cadence.

Role of Congress Congressional approval for new software development programs should be
based on a clear assessment of the current state of commercial software
and the need for DoD-specific customization. In many cases it should be
possible to make use of commercial systems and modify the DoD process
to be consistent with commercial practice rather than attempting to build
and maintain specialized business systems. Support legislative change of
10 USC §2222, as needed.

Draft Implementation Plan Lead Stakeholders Target Date
A5.1 Use a Net Promoter Score (NPS) assessment to identify

10 programs whose customers (soldiers, civilians, or
others) believe the functionality could be better executed
with commercial software.

CMO, with
USD(A&S), Service
counterparts

Q4 FY19

A5.2 Using the results of A5.1, select four projects for a more
detailed assessment of possible savings and/or efficiency
improvements.

CMO, with Service
CMOs and business
process owners

Q1 FY20

A5.3 Implement COTS opportunities, with contracts in place. Services, with CMO
oversight

Q1 FY21

A5.4 Submit legislative change proposal to modify Title 10
§2222 to reflect the lessons learned through process re-
engineering to utilize commercially available system over
DoD-specific solutions.

CMO, with
USD(A&S) and
Service counterparts

FY21

SWAP Study Final Release, 3 May 2019 S14

SWAP concept paper recommendations related to this recommendation
10C Use commercial process and software to adopt and implement standard business practices within

the Services.

D&D For common functions, purchase existing software and change DoD processes to use existing
apps.

Related recommendations from previous studies
DSB87 Rec 15: The USD(A) and the ASD(Comptroller) should direct Program Managers to assume

that system software requirements can be met with off-the-shelf subsystem and components
until it is proved that they are unique.

Sec809 Rec 16: Combine authority for requirements, resources, and acquisition in a single,
empowered entity to govern DBS portfolios separate from the existing acquisition chain of
command.

Sec809 Rec 18: Fund DBSs [defense business systems] in a way that allows for commonly accepted
software development approaches.

SWAP Study Final Release, 3 May 2019 S15

Additional Recommendation A6
Enduring Capability

Line of Effort Refactor statutes, regulations, and processes for software.
Recommendation Plan, budget, fund, and manage software development as an

enduring capability that crosses program elements and funding
categories, removing cost and schedule triggers associated with
hardware-focused regulations and processes.

Stakeholders USD(A&S), USD(C), SAE, Service FM, HASC, SASC
Background The current approach to acquiring software is based on projects that have

a beginning and end. However, many missions are “enduring capabilities”
and need software program and portfolio management that continually and
perpetually deliver across the spectrum of new capability, incremental
enhancements, and life cycle sustainment. The Department should pilot
and then scale methods for appropriating software budgets for these
enduring capability programs as an ongoing, regularly evaluated expense,
with continuous oversight, rather than large, multi-year development
contracts.

Desired State The Department can manage software acquisition as an activity requiring
continuous development, deployment, and sustainment, recognizing that
software systems are long-lived and have a continuous need for a level of
activity to evolve capabilities and address vulnerabilities. Assessment of
progress will be maintained throughout the software lifespan by means of
continual user engagement with working software, rather than at large-
scale milestone gates that do not map well to the underlying technical
activities.

Role of Congress N/A
Draft Implementation Plan Lead Stakeholder Target Date

A6.1 Modify FMR to implement this continuous funding
approach.

USD(C) Q4 FY19

A6.2 Select and launch five programs to be managed as
enduring capability, two-year pilot projects.

USD(A&S) with
SAE

Q4 FY19

A6.3 Work with FASAB to create an audit treatment of enduring
capability software that has a category distinct from
Property, Plant, and Equipment; defaults to treating
software as an expense, not an investment; and does not
distinguish between development and sustainment.

USD(A&S) with
USD(C)

Q4 FY20

SWAP concept paper recommendations related to this recommendation
10C Budgets should be constructed to support the full, iterative life cycle of the software being procured

with amount proportional to the criticality and utility of the software.

D&D Treat software development as a continuous activity, adding functionality continuously.

SWAP Study Final Release, 3 May 2019 S16

Additional Recommendation A7
Portfolio Management

Line of Effort Refactor statutes, regulations, and processes for software.
Recommendation Replace JCIDS, PPB&E, and DFARS with a portfolio management

approach to software programs, assigned to “PEO Digital” or an
equivalent office in each Service that uses direct identification of
warfighter needs to determine allocation priorities for software
capabilities.

Stakeholders USD(A&S), CAPE, JCS, USD(C), SAE, Service FM & PAE
Background The current requirements process often drives the development of exquisite

requirements that tend to be overly rigid and specific and attempt to
describe the properties of systems in dynamic environments years in
advance. The speed of requirements development and analysis is out of
sync with the pace of technology and mission changes. Most importantly,
requirement documents that are developed are often disconnected with the
end-user requirements.

Desired State Software programs are managed using a portfolio approach, in which
resources are available for reallocation across programs and funding
categories based on the importance and opportunities of given elements of
the portfolio. Relevant portfolios are defined based on the linkages between
programs of similar function, as defined by OSD and/or Services.

Role of Congress

Congress should approve and monitor metrics of success defined within
different portfolios and measure the progress against those metrics in
determining allocations of funding to different portfolios (with the decisions
within a portfolio made by the portfolio office, which would be held
accountable for those decisions).

Draft Implementation Plan Lead Stakeholders Target Date
A7.2 Select initial capability areas in each Service to place

under portfolio management by PEO Digital (or
equivalent).

SAEs Q3 FY19

A7.1 Issue guidance for management of software portfolios with
a “PEO Digital” or similar office with OSD and/or the
Services.

USD(A&S) SAE Q4 FY19

A7.3 Stand up PEO Digital or equivalent office with necessary
resources allocated and aligned.

SAE Q1 FY20

A7.4 Implement new portfolio management methods for initial
program capability areas.

PEO Digital Q3 FY20

A7.5 Determine intermediate successes of, or required
modifications to, portfolio management approach.

PEO Digital Q1 FY21

A7.6 Establish portfolio management approach as standard
work for software.

PEO Digital, SAE FY22

SWAP Study Final Release, 3 May 2019 S17

SWAP working group inputs (reflected in Appendix F) related to this recommendation

Related recommendations from previous studies
OSD06 Transform the Planning, Programming, and Budgeting, and Execution process and stabilize

funding for major weapons systems development programs.

DSB09

The USD(AT&L) aggressively delegate milestone decision authority commensurate with program
risk.

DSB09

The USD(AT&L) consider a more effective management and oversight mechanism to ensure joint
program stability and improved program outcomes.

DSB09

Consolidate all acquisition oversight of information technology under the USD(AT&L) by moving
into that organization those elements of the OASD (NII)/DOD CIO and Business Transformation
Agency responsible for IT acquisition oversight. The remainder of OASD (NII)/DOD CIO is
retained as it exists today, but should be strengthened as indicated in the previous
recommendation.

Sec809 Rec 36: Transition from a program-centric execution model to a portfolio execution model.

Sec809 Rec 37: Implement a defense-wide capability portfolio framework that provides an enterprise view
of existing and planned capability, to ensure delivery of integrated and innovative solutions to
meet strategic objectives.

Sec809 Rec. 38: Implement best practices for portfolio management.

Sec809 Rec. 39: Leverage a portfolio structure for requirements.

App Within each Component-unique Budget Activity (BA), Budget Line Items (BLINs) align by
functional or operational portfolios. The BLINs may be further broken into specific projects to
provide an even greater level of fidelity. These projects would represent key systems and
supporting activities, such as mission engineering.

App By taking a portfolio approach for obtaining software-intensive capabilities, the Components
can better manage the range of requirements, balance priorities, and develop portfolio
approaches to enable the transition of data to information in their own portfolios and data
integration across portfolios to achieve mission effects, optimize the value of cloud technology,
and leverage and transition to the concept of acquisition of whole data services versus
individual systems.

App This fund will be apportioned to each of the Military Departments and OSD for Fourth Estate
execution.

App Governance: management execution, performance assessment, and reporting would be
aligned to the portfolio framework—BA, BLI, project.

Req OSD and the Joint Staff should consider creating “umbrella” software programs around “roles”
(e.g., USAF Kessel Run).

SWAP Study Final Release, 3 May 2019 S18

Primary Recommendation B1
Digital Infrastructure

Line of Effort Create and maintain cross-program/cross-service digital infrastructure.
Recommendation Establish and maintain digital infrastructure within each Service or

Agency that enables rapid deployment of secure software to the field,
and incentivize its use by contractors.

Stakeholders A&S, CIO, SAE, USD(C)
Background Currently, DoD programs each develop their own development and test

environments, which requires redundant definition and provisioning,
replicated assurance (including cyber), and extended lead times to deploy
capability. Small companies and other new entrants have difficulties
providing software solutions to DoD because those environments are not
available outside the incumbent contractor or because they have to build
(and certify) unique infrastructure from scratch.

Desired State Programs will have access to, and be stakeholders in, a cross-program,
modern digital infrastructure that can benefit from centralized support and
provisioning to lower overall costs and the burden for each program.
Development infrastructure supporting CI/CD and DevSecOps is available
as best of breed and GOTS provided so that contractors want to use it,
though DoD programs or organizations that want or need to go outside of
that existing infrastructure can still do so.

Role of Congress Congress should track the availability, scale, use, and cost effectiveness of
digital infrastructure, with the expectation that overall capacity will expand
while unit costs decrease over time. Sufficient funding should be provided
on an ongoing basis to maintain and upgrade digital infrastructure and to
maintain best-of-breed capability that accelerates software development.

Draft Implementation Plan Lead Stakeholder Target Date
B1.1 Designate organization(s) responsible for creating and

maintaining the digital infrastructure for each Service’s
digital infrastructure. Explore the use of tiered approaches
with infrastructure at Service or Program level, as
appropriate.

DoD CIO, USD(C)
and Services (SAE
and Service CIO)

Q3 FY19

B1.2 Designate organization(s) responsible for creating and
maintaining digital infrastructure(s) for DoD agencies and
organizations, including joint digital infrastructure available
to the Services.

USD(A&S), with
CIO, CMO

Q3 FY19

B1.3 Provide resources for digital infrastructure, including cloud
solutions, pre-approved “drop-ship” local compute
capability, approved development environments (see DIB
Compute Environment concept paper, Appendix I
[Glossary]).

USD(A&S), SAE
with CAPE,

USD(C)

FY20
budget

B1.4 Define baseline digital infrastructure systems and
implement procurement and deployment processes and
capability.

Responsible
organizations from

B1.1, B1.2

Q2 FY20

SWAP Study Final Release, 3 May 2019 S19

B1.5 Implement digital infrastructure and provide access to
ongoing and new programs.

Responsible
organizations from

B1.1, B1.2

Q3 FY20

B1.6 Identify acquisition programs to transition to digital
infrastructure.

SAE Q2 FY20

B1.7 Transition programs to digital infrastructure. SAE, CIO, PEO,
PM

Q4 FY20

SWAP concept paper recommendations related to this recommendation

10C Make computing, storage, and bandwidth, and programmers abundant to DoD developers and
users.

D&D Use validated software development platforms that permit continuous integration & delivery
evaluation (DevSecOps platform).

Visits Separate development of mission-level software from development of IA-accredited platforms.

SWAP working group inputs (reflected in Appendix F) related to this recommendation
T&E Build the enterprise-level digital infrastructure needed to streamline software development and

testing across the full DoD software portfolio.

Related recommendations from previous studies
DSB87 Rec 16: All methodological efforts, especially STARS, should look to see how commercially

available software tools can be selected and standardized for DoD needs.

SEI01 Infrastructure: In distributed development activities, get high-quality, secure broadband
communications between sites. It is an enabler, not a cost.

SWAP Study Final Release, 3 May 2019 S20

Primary Recommendation B2
Automated Testing and Evaluation

Line of Effort Create and maintain cross-program/cross-service digital infrastructure.
Recommendation Create, implement, support, and use fully automatable approaches to

testing and evaluation (T&E), including security, that allow high-
confidence distribution of software to the field on an iterative basis.

Stakeholders DOT&E, USD(A&S), DDR&E(AC), SAE, Service Test Agencies
Background To deliver SW at speed, rigorous, automated testing processes and

workflows are essential. Current DoD practices and procedures often see
OT&E as a tailgate process, sequentially after development has completed,
slowing down delivery of useful software to the field and leaving existing
(potentially poorly performing and/or vulnerable) software in place.

Desired State Development systems, infrastructure, and practices are focused on
continuous, automated testing by developers (with users) with frequency
dependent on type of software, but targets cycle times measured in weeks.
To the maximum extent possible, system operational testing is integrated
(and automated) as part of the development cycle using data, information,
and test protocols delivered as part of the development environment.
Embedded software in safety-critical systems is tested with high confidence
in representative (physical and simulated) environments. Testing and
evaluation/certification of COTS components is done once (if justified), and
then ATO reciprocity (Rec B3) is applied to enable use in other programs,
as appropriate. System-level testing using modeling and simulation (“digital
twin”) is routinely used.

Role of Congress DOT&E should provide annual reports to Congress that describe the
availability, scale, use, and effectiveness of automated T&E, with the
expectation that level/depth of testing will increase at the same time as
speed and cycle time are being improved.

Draft Implementation Plan Lead Stakeholders Target Date
B2.1 Establish procedures for fully automated testing on digital

infrastructure (Rec B1), updating DoDI 5129.47 and
Service equivalents as needed.

USD(A&S), DOT&E,
with Service Testers

Q1 FY20

B2.2 Establish processes for automated and red-team-based
security testing, including zero-trust assumptions,
penetration testing, and vulnerability scanning.

USD(A&S), DOT&E,
with Service Testers

Q1 FY20

B2.3 Identify initial programs to use tools and workflows. SAE Q1 FY20
B2.4 Implement minimum viable product (MVP) tools and

workflows on digital infrastructure (Rec B1).
SAE, DOT&E, with
PMOs

Q2 FY20

B2.5 Migrate initial programs to digital infrastructure using
automated T&E.

PEO, with
Responsible
Organizations

Q3 FY20

B2.6 Use tools and workflows, identify lessons learned and
improvements (using DevSecOps iterative approach).

Service Testers,
with PEO/PM

Q4 FY20

SWAP Study Final Release, 3 May 2019 S21

B2.7 Modify tools and workflows; document procedures. Responsible
Organizations,
Service Testers

Q4 FY20

SWAP concept paper recommendations related to this recommendation
10C Automate testing of software to enable critical updates to be deployed in days to weeks, not

months or years.

D&D Create automated test environments to enable continuous (and secure) integration and
deployment to shift testing and security left.

Visits Automate testing of software to enable critical updates to be deployed in days to weeks, not
months or years (also requires changes in testing organization).

Visits Add testing as a service.

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Acq DOT&E should use test data collected through existing test methodologies present in software-

intensive programs and not recommend or prescribe additional independent, one-time test
events.

Acq One-time IOT&Es or cybersecurity test events should not be recommended for software-intensive
systems except in specific circumstances if warranted.

T&E Build the enterprise-level digital infrastructure needed to streamline software development and
testing across the full DoD software portfolio.

T&E DoD should expand DOT&E’s current capability to obtain state-of-the-art cyber capabilities on a
fee-for-service basis.

Related recommendations from previous studies
DSB87 Rec 27: Each Service should provide its software Using Commands with facilities to do

comprehensive operational testing and life-cycle evaluation of extensions and changes.

SEI12 Merge agile and security best practices (e.g., integrate vulnerability scans into continuous
integration process, leverage automated test cases for accreditation validation, adhere to
secure coding standards).

SEI16 Employ concurrent testing and continuous integration.

USDS When issuing a solicitation, it should explain the agile software development process. The
solicitation should also describe the required testing of functional requirements and make it
clear that testing should be integrated into each sprint cycle.

IDA18a Analysis of planned operational test lengths indicates that the test scope is generally not long
enough, demonstrate operational reliability with statistical confidence.

SWAP Study Final Release, 3 May 2019 S22

Primary Recommendation B3
ATO Reciprocity

Line of Effort Create and maintain cross-program/cross-service digital infrastructure.
Recommendation Create a mechanism for Authorization to Operate (ATO) reciprocity

within and between programs, Services, and other DoD agencies to
enable sharing of software platforms, components, and infrastructure
and rapid integration of capabilities across (hardware) platforms,
(weapon) systems, and Services.

Stakeholders DoD CIO, A&S, Service CIOs, DISA
Background Current software acquisition practice emphasizes the differences among

programs: perceptions around different missions, different threats, and
different levels of risk tolerance mean that components, tools, and
infrastructure that have been given permission to be used in one context
are rarely accepted for use in another. The lack of ATO reciprocity drives
each program to create their own infrastructure, repeating time- and effort-
intensive activities needed to certify elements as secure for their own
specific context.

Desired State Modern software components, tools, and infrastructure, once accredited as
secure within DoD, can be used appropriately and cost-effectively by
multiple programs. Programs can spend a greater percentage of their
budgets on developing software that adds value to the mission rather than
spending time and effort on basic software infrastructure. Accreditation of
COTS components is done once and then made available for use in other
programs, as appropriate.

Role of Congress N/A
Draft Implementation Plan Lead Stakeholder Target Date

B3.1 Issue guidance making reciprocity the default practice in
DoD with limited exceptions and update DoDI 8510.01 to
reflect updated risk management framework. Exceptions
should require signoff by the DoD CIO to discourage their
use.

DoD CIO, with
Service CIOs

Q3 FY19

B3.2 Establish DoD-wide repository for ATO artifacts with tools
and access rules that enable Services to identify existing
ATOs and utilize them when possible.

DoD CIO, with
Service CIOs,

DISA

Q4 FY19

B3.3 Implement procedures and access controls so that
Authorizing Officials have visibility over other programs that
are using compatible ATOs.

DoD CIO, with
Service CIOs,

DISA

Q2 FY20

B3.4 Implement mechanisms to allow FedRAMP and other non-
DoD security certifications to be used for DoD ATO when
appropriate based on intended use and environment.

DoD CIO, with
FedRAMP

Q4 FY20

SWAP Study Final Release, 3 May 2019 S23

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Sec As security is “baked in” to software during the development process, people must be educated

about what that means as different tools look at different security aspects.

Sec People must learn to appreciate that speed helps increase security. Security is improved when
changes and updates can be made quickly to an application. Using automation, software can be
reviewed quickly.

Sec The AO must also be able to review documentation and make a risk decision quickly and make
that decision on the process and not the product.

Related recommendations from previous studies
SEI12 Define criteria for reaccreditation early in the project.

SEI12 Leverage long accreditation approval wait time with frequent community previews.

SEI12 Don’t apply all the information assurance controls blindly.

SWAP Study Final Release, 3 May 2019 S24

Additional Recommendation B4
Prioritize Modern Software Development Methods

Line of Effort Create and maintain cross-program/cross-service digital infrastructure.
Recommendation Prioritize secure, iterative, collaborative development for selection

and execution of new software development programs (and software
components of hardware programs), especially those using
commodity hardware and operating systems.

Stakeholders USD(A&S), USD(C) DOT&E, SAE, Service Test Agencies
Background Despite 37+ years of recommendations to stop using waterfall development

for software programs, DoD continues to make use of hardware-centric
approaches to development for software and software-intensive programs.
While portions of the DoD 5000.02 Instructions apply to “Defense Unique
Software Intensive” programs and “Incrementally Deployed Software
Intensive” programs, these are still waterfall processes with years between
the cycles of deployments (instead of weeks). These processes may be
appropriate for some (though not all) embedded systems, but they are not
the right approach for DoD-specific software running on commercial
hardware and operating systems.

Desired State DoD makes use of commercial software (without customization) whenever
possible. When DoD-specific software development is required, contractors
with demonstrated ability in the implementation of modern software
development processes (e.g., Agile, DevOps, DevSecOps) are prioritized
in the selection process and a contract structure is used that enables those
methods to be successfully applied. For those applications for which
hardware and software development are closely coupled, modern methods
are still used as appropriate, especially in terms of information assurance
testing.

Role of Congress Congress should review metrics for performance on software (and
software-intensive) programs with the expectation that modern methods of
software are able to deliver software to the field quickly, provide rapid and
continuous updates of capability, perform extensive automated testing, and
track metrics for speed and cycle time, security, code quality, and useful
capability.

Draft Implementation Plan Lead Stakeholders Target Date
B4.1 Establish metrics for evaluation of software development

environments, following DSB 2018 recommendations on
software factors and the DIB’s “Development
Environment” and “Agile BS Detector” concept papers.

USD(A&S) Q3 FY19

B4.2 Issue Directive-Type Memorandum (DTM) to specify
DoD’s default software development approach is secure,
iterative, modular, and collaborative.

USD(A&S) Q3 FY19

B4.3 Create new DoD Instruction (DoDI) 5000.SW (or update
DoDI 5000.02 and 5000.75) to specify DoD’s default
software development approach is secure, iterative,
modular, and collaborative.

USD(A&S) Q1 FY20

SWAP Study Final Release, 3 May 2019 S25

B4.4 Update courseware at Defense Acquisition University to
specify DoD’s default software development approach is
secure, iterative, modular, and collaborative.

USD(A&S) Q2 FY20

SWAP concept paper recommendations related to this recommendation

10C Adopt a DevOps culture for software systems.

D&D Require developers to meet with end users, then start small and iterate to quickly deliver useful
code.

Visits Adopt a DevOps culture: design, implement, test, deploy, evaluate, repeat.

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Con Use collaborative tools and libraries so that all content is available to all parties at all times.

Con Use an agile process to manage structure and technical requirements.

Sec As security is “baked in” to software during the development process, people must be educated
about what that means as different tools look at different security aspects.

Wkf Incentivize defense contractors to demonstrate their ability to leverage modern software
methodologies.

Wkf Contractor Reform. Adjust future NDAA’s to add incentives for defense contractors to use modern
development practices. (See FY18NDAA / §§873 & 874)

Related recommendations from previous studies
DSB87 Rec 12: Use evolutionary acquisition, including simulation and prototyping, as discussed

elsewhere in this report, to reduce risk.
DSB87 Rec 17: DoD should devise increased productivity incentives for custom-built software

contracts and make such incentivized contracts the standard practice.
DSB87 Rec 18: DoD should devise increased profit incentives on software quality.

DSB87 Rec 23: The USD(A) should update DoD Directive 5000.29, “Management of Computer
Resources in Major Defense Systems,” so that it mandates the iterative setting of
specifications, the rapid prototyping of specified systems, and incremental development.

DSB87 Rec 24: DoD STD 2167 should be further revised to remove any remaining dependency on the
assumptions of the “waterfall” model and to institutionalize rapid prototyping and incremental
development.

DSB87 Rec 29: The USD(A) should develop economic incentives, to be incorporated into standard
contracts, to allow contractors to profit from offering modules for reuse, even though built with
DoD funds.

DSB87 Rec 30: The USD(A) should develop economic incentives, to be incorporated into all cost-plus
standard contracts, to encourage contractors to buy modules and use them rather than build
new ones.

DSB87 Rec 31: The USD(A) and ASD(Comptroller) should direct Program Managers to identify in their
programs those systems, components, and perhaps even modules that may be expected to be
acquired rather than built, and to reward such acquisition in the RFPs.

SEI12 Make sure Agile project teams understand the intent behind security requirements and
organize the backlog accordingly.

SEI12 Ensure agile development processes produce and maintain “just enough” design
documentation.

SWAP Study Final Release, 3 May 2019 S26

SEI12 Make sure there is at least one person with strong security analysis expertise on the Agile
project team.

SEI12 Foster Agile project team and accrediting authority collaboration.

SEI12 Leverage unclassified environments for agile development and community previews.

SEI12 Agile and the information assurance community must join forces to continue improving
information assurance processes.

GAO16a Establish a department policy and process for the certification of major IT investments’
adequate use of incremental development, in accordance with OMB’s guidance on the
implementation of FITARA.

NPS16a Systems leveraging open architectures and incremental designs can focus on delivering initial
capability quickly and then iterate improvements over time. The DoD can tailor acquisition
processes for each major type of system to streamline each program’s path through focused
guidance.

SEI16 Ensure that the RFP contains language that allows the use of Agile. One promising approach
that is consistent with Agile is to make sure the original contract is written with Agile in mind
and contains sufficient flexibility to permit a wide scope of activity that could be modified as the
situation develops. Agile program managers (PMs) could establish contract vehicles that allow
for collaborative discussions to resolve and address dynamic developments over the life of the
effort.

DSB18 Requests for proposals (RFPs) for acquisition programs entering risk reduction and full
development should specify the basic elements of the software framework supporting the
software factory, including code and document repositories, test infrastructure, software tools,
check-in notes, code provenance, and reference and working documents informing
development, test, and deployment.

DSB18 Rec 1: A key evaluation criterion in the source selection process should be the efficacy of the
offeror’s software factory.

DSB18 Rec 1a: Establish a common list of source selection criteria for evaluating software factories for
use throughout the Department.

DSB18 Rec 1b: Competing contractors should have to demonstrate at least a pass-fail ability to
construct a software factory.

DSB18 Rec 1c: Criteria for evaluating software factories should be reviewed and updated every five
years.

DSB18 Rec 5e: Defense prime contractors must build internal competencies in modern software
methodologies.

DSB18 Rec 2: The DoD and its defense industrial base partners should adopt continuous iterative
development best practices for software, including through sustainment.

DSB18 Rec 2c: [DoD should] engage Congress to change statutes to transition Configuration Steering
Boards (CSB) to support rapid iterative approaches (Fiscal Year (FY) 2009 National Defense
Authorization Act (NDAA), Section 814).

DSB18 Rec 2d: [DoD] should require all programs entering Milestone B to implement these iterative
processes for Acquisition Category (ACAT) I, II, and III programs.

DSB18 Rec 4a: For ongoing development programs, the USD(A&S) should immediately task the PMs
with the PEOs for current programs to plan transition to a software factory and continuous
iterative development.

DSB18 Rec 4c: Defense prime contractors should incorporate continuous iterative development into a
long-term sustainment plan.

DSB18 Establish a common list of source selection criteria for evaluating software factories for use

SWAP Study Final Release, 3 May 2019 S27

throughout the Department.
FCW18 Contractors would allow government to develop past performance reports with less

documentation and less contractor opportunity to appeal their ratings.
USDS Agile software development is the preferred methodology for software development contracts

that contribute to the creation and maintenance of digital services, whether they are websites,
mobile applications, or other digital channels.

USDS Although Part 39 does not directly speak to agile software development practices, it endorses
modular contracting principles where information technology systems are acquired in
successive, interoperable increments to reduce overall risk and support rapid delivery of
incremental new functionality.

USDS With agile software development, requirements and priorities are captured in a high-level
Product Vision, which establishes a high-level definition of the scope of the project, specifies
expected outcomes, and produces high-level budgetary estimates.

USDS Under agile software development, the Government retains the responsibility for making
decisions and managing the process; it plays a critical role in the IPT as the Product Owner by
approving the specific plans for each iteration, establishing the priorities, approving the overall
plan revisions reflecting the experience from completed iterations, and approving deliverables.

USDS OMB’s 2012 Contracting Guidance to Support Modular Development states that IDIQ contracts
may be especially suitable for agile software development because they provide a high level of
acquisition responsiveness, provide flexibility, and accommodate the full spectrum of the
system life cycle that provides both development and operational products and services. BPAs
may work with agile software development using modular contracting methods. Additionally,
stand-alone contracts or single-award contracts may be used.

USDS The Agile process works only if there are appropriate dedicated resources, as the process can
be labor intensive. Agencies need to ensure adequate resources are applied to manage their
contracts irrespective of the strategy used. Strong contract management ensures projects stay
on course and helps prevent the agency from becoming overly reliant on contractors.

SWAP Study Final Release, 3 May 2019 S28

Additional Recommendation B5
Cloud Computing

Line of Effort Create and maintain cross-program/cross-service digital infrastructure.
Recommendation Remove obstacles to DoD usage of cloud computing on commercial

platforms, including DISA CAP limits, lack of ATO reciprocity, and
access to modern software development tools.

Stakeholders DoD CIO, Service CIOs, USD(A&S)
Background Lack of ATO reciprocity and current DoD procedures for cloud are

obstacles to leveraging modern infrastructure and tools.
Desired State DoD developers and contractors are able to use modern cloud computing

environments and commercial development tools quickly, with a single
certification that is transferable to other groups using the same
environment and tools.

Role of Congress N/A
Draft Implementation Plan Lead Stakeholders Target Date

B5.1 Rescind Cloud Access Point (CAP) policy and replace
with policy that ensures security at scale (including end-to-
end encryption).

DoD CIO Q3 FY19

B5.2 In conjunction with primary Rec B3, allow transfer of ATOs
for commercial platforms between programs and Services.

DoD CIO Q3 FY19

B5.3 Create specifications and certification process for
approval of standard development tools (w/ ATO
reciprocity).

DoD CIO Q4 FY19

B5.4 In conjunction with Rec B1, establish a common,
enterprise ability to develop software solutions in the
“easy-to-acquire-and-provision” cloud that is fully
accredited by design of the process, tools, and pipeline.

USD(A&S) Q1 FY20

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Acq Include an approach for enterprise-level DevSecOps and other centralized infrastructure

development and management, approach for shared services, and applications management.

Inf Establish a DoD enterprise ability to procure, provision, pay for, and use cloud that is no different
from the commercial entry points for cloud computing.

Inf DoD should establish a common, enterprise ability to develop software solutions in the “easy-to-
acquire-and-provision” cloud that is fully accredited by design of the process, tools, and pipeline.

Related recommendations from previous studies
Sec809 Rec. 43: Revise acquisition regulations to enable more flexible and effective procurement of

consumption-based solutions.

SWAP Study Final Release, 3 May 2019 S29

Additional Recommendation B6
Certify Code/Toolchain

Line of Effort Create and maintain cross-program/cross-service digital infrastructure.
Recommendation Shift from certification of executables for low- and medium-risk

deployments to certification of code/architectures and certification of
the development, integration, and deployment toolchain.

Stakeholders USD(A&S), SAE, DoD CIO, Service CIO
Background Today, the typical focus of security accreditation on programs is to certify

each version of the code that is intended for release. This works against
the goal of frequent updates because the more versions of software that
are created, the more often the time and expense of the certification have
to be borne by the program.

Desired State The Department will accredit software infrastructures that are capable of
producing quality code when used appropriately, enabling each version of
the code produced on that infrastructure to be treated as certifiably secure
(within appropriate limits, e.g., for versions that do not entail major
architectural changes). With this change in certification, DoD will enable
rapid fielding of mission-critical code at high levels of information
assurance.

Role of Congress N/A
Draft Implementation Plan Lead Stakeholders Target Date

B6.1 Identify and use commercial certification procedures
for security assessments and deployment
mechanisms that can be used for DoD software
programs.

CIO Q4 FY19

B6.2 Identify three lead programs for initial
implementation of certification procedures.

A&S, SAE Q1 FY20

B6.3 Expand certification procedures to 10 additional
sites, spanning all Services and multiple OSD
offices; update procedures with each new
certification to streamline process.

A&S, SAE with
CIO

Q3 FY20

B6.4 Update DoDI 8501.01, Risk Management
Framework for DoD Information Technology, to
reflect revised certification procedures.

CIO with SAE,
A&S

Q4 FY20

SWAP working group inputs (reflected in Appendix F) related to this recommendation

Acq Exempt the DoD from the Clinger Cohen Act, 40 U.S.C. 1401(3)

Inf DoD should establish a common, enterprise ability to develop software solutions in the “easy-to-
acquire-and-provision” cloud that is fully accredited by design of the process, tools, and pipeline.

Related recommendations from previous studies
SEI12 Use common operating environment (COE), software development toolkits (SDKs), and

enterprise services to speed up accreditation time.

SWAP Study Final Release, 3 May 2019 S30

SEI12 Apply a risk-based, incremental approach to security architecture.

SEI12 Leverage design tactics such as layering and encapsulation to limit impact of change.

SEI13 For an SoS or for the more likely case of a system or component that participates in an existing
SoS, an effective risk management approach should:
• scale to size and complexity of systems of systems
• incorporate dynamics
• integrate across full life cycle: requirements to sustainment
• focus on success as well as failure

SWAP Study Final Release, 3 May 2019 S31

Additional Recommendation B7
Hardware as a Consumable

Line of Effort Create and maintain cross-program/cross-service digital infrastructure.
Recommendation Plan and fund computing hardware (of all appropriate types) as

consumable resources, with continuous refresh and upgrades to
current, secure operating systems and platform components.

Stakeholders USD(A&S), SAE, DoD CIO, Service CIO, USD(C), CAPE
Background Current information technology (IT) refreshes take 8-10 years from

planning to implementation, which means that most of the time our systems
are running on obsolete hardware that limits our ability to implement the
algorithms required to provide the level of performance needed to stay
ahead of our adversaries. Maintaining legacy code for different variants that
have hardware capabilities ranging from 2 to 12 years old is an almost
impossibly large spread of capability in computing, storage, and
communications. From a contracting perspective, this change would
require DoD to provide a stable annual budget that paid for new hardware
and software capability (see Commandment #3), but this would very likely
save money over the longer term.

Desired State Whenever possible, applications are run in the cloud, so that algorithms
can be run on the latest hardware and operating systems. For weapons
systems, a continuous hardware refresh mentality is in place that enables
software upgrades, crypto updates, and connectivity upgrades to be rapidly
deployed across a fleet on an ongoing basis. The adoption rate of the latest
hardware and operating system versions is tracked and targets are set for
maintaining hardware and operating system “readiness.” The paradigm for
computing hardware from current Property, Plant, and Equipment
categorization (as investments with depreciation schedules) is modified to
treat hardware as an expense.

Role of Congress Provide funding for ongoing replacement of computing hardware as a
consumable with a 2–4-year lifetime. Track “readiness” of currently
deployed software capability in part by measuring age of the hardware and
operating systems on which software is being run.

Draft Implementation Plan Lead Stakeholders Target Date
B7.1 Establish funds for initial existing weapons

platforms involving computing hardware to replace
hardware every 2–4 years (like oil).

CIO with USD(C),
SAE

Q1 FY20

B7.2 Establish draft guidance for determining when to
update hardware and operating systems to
balance cost with risk/capability.

CIO Q2 FY20

B7.3 Work with FASAB to change audit treatment of
software/IT with these goals: (1) Separate
category for software instead of being
characterized as Property, Plant, and Equipment;
(2) Default setting that software is an expense, not

USD(A&S), in
coordination with

USD(C)

Q4 FY20

SWAP Study Final Release, 3 May 2019 S32

an investment; and (3) there is no “sustainment”
phase for software.

B7.4 Modify DoD Financial Management Regulation
(FMR) to capture changes in how hardware is
purchased and retired from service.

USD(C) Q1 FY21

SWAP concept paper recommendations related to this recommendation
10C Move to a model of continuous hardware refresh in which computers are treated as a consumable

with a 2-3 year lifetime.

Visits Make use of platforms (hardware and software) that continuously evolve at the timescales of the
commercial sector (3-5 years between HW/OS updates).

Related recommendations from previous studies
Sec809 Rec. 44: Exempt DoD from Clinger–Cohen Act Provisions in Title 40:

Sec809 Rec. 56: Use authority in Section 1077 of the FY 2018 NDAA to establish a revolving fund for
information technology modernization projects and explore the feasibility of using revolving
funds for other money-saving investments.

SWAP Study Final Release, 3 May 2019 S33

Primary Recommendation C1
Organic Development Groups

Line of Effort Create new paths for digital talent (especially internal talent).
Recommendation Create software development units in each Service consisting of

military and civilian personnel who develop and deploy software to
the field using DevSecOps practices.

Stakeholders USD(A&S), USD(P&R), SAE, Service HR
Background DoD’s capacity to apply modern technology and software practices to meet

its mission is required in order to remain relevant in increasingly technical
fighting domains, especially against peer adversaries. While DoD has both
military and civilian software engineers (often associated with maintenance
activities), the IT career field suffers from a lack of visibility and support.
The Department has not prioritized a viable recruiting strategy for technical
positions, and there is no comprehensive training or development program
that prepares the technical and acquisition workforce to adequately deploy
modern software development tools and methodologies.

Desired State DoD recruits, trains, and retains internal capability for software
development, including by service members, and maintains this as a
separate career track (like DoD doctors, lawyers, and musicians). Each
Service has organic development units that are able to create software for
specific needs and that serve as an entry point for software development
capability in military and civilian roles (complementing work done by
contractors). The Department’s workforce embraces commercial best
practices for the rapid recruitment of talented professionals, including the
ability to onboard quickly and provide modern tools and training in state-of-
the-art training environments. Individuals in software development career
paths are able to maintain their technical skills and take on DoD leadership
roles.

Role of Congress Congress should receive regular “readiness” reports that include organic
software development capability and provide budget required to maintain
desired capability level and resources for modern software development.

Draft Implementation Plan Lead Stakeholders Target Date
C1.1 Exercise existing acquisition and cybersecurity hiring

authorities to increase the number of software developers
in DoD programs with vacant positions.

SAE, PEO, with CIO
(cyber excepted
service ability)

Immediately

C1.2 Create new military occupational specialty (MOS) and core
occupational series plus corresponding career tracks for
each Service; use to grow digital talent for modern
software development (e.g., Agile, DevSecOps).

J1 and comparable
X1 for each Service

with USD(P&R)

Q1 FY20

C1.3 Create regulations to allow standard identification,
recruitment, and onboarding of experienced civilian
software talent, especially on rotation from private sector
roles.

USD(P&R) Q1 FY20

SWAP Study Final Release, 3 May 2019 S34

C1.4 Create mechanism for tracking software development
expertise and use as preferred experience for promotion
into software engineer and acquisition roles.

A&S, CIO Q2 FY20

C1.5 Obtain additional manpower authorizations for military and
civilian SW developers.

USD(A&S), with
USD(P&R), SAE

FY20, FY21

C1.6 Stand up one or more software factories within each
Service, tied to field needs that can be satisfied through
organic software development groups.

SAEs, with PEOs
Digital

FY20
(create),

FY21
(scale)

SWAP concept paper recommendations related to this recommendation
10C Establish Computer Science as a DoD core competency.

D&D Hire competent people with appropriate expertise in software to implement the desired state and
give them the freedom to do so (“competence trumps process”).

SWAP working group inputs (reflected in Appendix F) related to this recommendation
M&S The definition of “core capabilities” in 10 USC 2464 should be revisited in light of warfighter

dependence on software-intensive systems to determine the scope of DoD’s core organic software
engineering capability, and we should engage with Congress on the proposed revision to clarify the
intent and extent of key terminology used in the current statute.

M&S Revise industrial base policy to include software and DoD’s organic software engineering
capabilities and infrastructure. Start enterprise planning and investment to establish and modernize
organic System Integration Labs (SILs), software engineering environments, and technical
infrastructure; invest in R&D to advance organic software engineering infrastructure capabilities.

Wkf Develop a core occupational series based on current core competencies and skills for software
acquisition and engineering.

Wkf Overhaul the recruiting and hiring process to use simple position descriptions, fully leverage hiring
authorities, engage subject matter experts as reviewers, and streamline the onboarding process to
take weeks instead of months.

Wkf Embrace private-sector hiring methods to attract and onboard top talent from non-traditional
backgrounds that may require special authorities to join the Department.

Wkf Develop a strategic recruitment program that targets civilians, similar to the recruitment strategy for
military members, [including] prioritizing experience and skills over cookie-cutter commercial
certifications or educational attainment.

Wkf The Department should incentivize and provide software practitioners access to modern
engagement and collaboration platforms to connect, share their skills and knowledge, and develop
solutions leveraging the full enterprise.

Wkf Allow for greater private-public sector fluidity across the workforce while empowering the existing
workforce to create a place where they want to work.

Wkf Modify Title 10, §1596a to create a new Computer-language proficiency pay statute.

Wkf Pilot a cyber-hiring team with the necessary authorities to execute report recommendations and
that can serve as a Department-wide alternative to organization’s traditional HR offices and will
provide expedited hiring and a better candidate experience for top-tier cyber positions.

Related recommendations from previous studies
DSB87 Rec 26: Each Service should provide its software Product Development Division with the ability

SWAP Study Final Release, 3 May 2019 S35

to do rapid prototyping in conjunction with users.
DSB87 Rec 36: Establish mechanisms for tracking personnel skills and projecting personnel needs.

DSB87 Rec 37: Structure some office careers to build a cadre of technical managers with deep
technical mastery and broad operational overview.

SEI10 Improve compensation and advancement opportunities to increase tenure.

SWAP Study Final Release, 3 May 2019 S36

Primary Recommendation C2
Acquisition Workforce Training

Line of Effort Create new paths for digital talent (especially internal talent).
Recommendation Expand the use of (specialized) training programs for CIOs, SAEs,

PEOs, and PMs that provide (hands-on) insight into modern software
development (e.g., Agile, DevOps, DevSecOps) and the authorities
available to enable rapid acquisition of software.

Stakeholders USD(A&S), DoD CIO, SAE, Service CIO
Background Acquisition professionals have been trained and had success in the current

model, which has produced the world’s best military, but this model is not
serving well for software. New methodologies and approaches introduce
unknown risks, and acquisition professionals are often not incentivized to
make use of the authorities available to implement modern software
methods. At the same time, senior leaders in DoD need to be more
knowledgeable about modern software development practices so they can
recognize, encourage, and champion efforts to implement modern
approaches to software program management.

Desired State Senior leaders, middle management, and organic and contractor-based
software developers are aligned in their view of how modern software is
procured and developed. Acquisition professionals are aware of all of the
authorities available for software programs and use them to provide
flexibility and rapid delivery of capability to the field. Program leaders are
able to assess the status of software (and software-intensive) programs
and spot problems early in the development process, as well as provide
continuous insight to senior leadership and Congress. Highly specialized
requirements are scrutinized to avoid developing custom software when
commercial offerings are available that are less expensive and more
capable.

Role of Congress Prioritize experience with modern software development environments in
approval of senior acquisition leaders.

Draft Implementation Plan Lead Stakeholders Target Date
C2.1 Leverage existing training venues to add content about

modern software development practices.
USD(A&S), SAEs

with DAU
Q4 FY19

C2.2 Create and provide training opportunities via boot camps
and rotations for acquisition professionals to obtain hands-
on experience in DevSecOps programs.

A&S with SAEs,
USD(P&R)

FY20 (MVP)2
FY21 (scale)

C2.3 Develop additional training opportunities for key leaders
about modern software development practices.

USD(A&S), SAE,
DAU

Q2 FY20

C2.4 Create software continuing education programs and
requirements for CIOs, SAEs, PEOs, and PMs, modeled
after MCLE (Minimum Continuing Legal Education) for
lawyers.

A&S, DAU Q3 FY20

2 Minimum viable product (first useful iteration)

SWAP Study Final Release, 3 May 2019 S37

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Con Provide training to KOs, PMs, and leadership to understand the value and methods associated

with Agile and modular implementation.

Wkf Create a software acquisition workforce fund (similar to the existing Defense Acquisition Workforce
Development Fund (DAWDF)) ... to hire and train a cadre of modern software acquisition experts.

Wkf Pilot development programs that provide comprehensive training for all software acquisition
professionals, developers, and associated functions.

Con Provide training to KOs, PMs, and leadership to understand the value and methods associated
with Agile and modular implementation.

Con Educate PMs and KOs on Open Source, proprietary, and government-funded code.

Related recommendations from previous studies
DSB09 All CIOs should approve IT acquisition program manager training and certification and advise

the personnel selection process.

DSB09

The USD(AT&L) shall direct the Defense Acquisition University, in coordination with the
Information Resources Management College, to integrate the new acquisition model into their
curriculum.

DSB18 USD(A&S) should task the PMs of programs that have transitioned successfully to modern
software development practices to brief best practices and lessons learned across the
Services.

DSB18 Rec 5d: The USD(A&S) and the USD(R&E) should direct the Defense Acquisition University
(DAU) to establish curricula addressing modern software practices leveraging expertise from
the DDS, the FFRDCs, and the University Affiliated Research Centers (UARCs).

DSB18 Rec 5g: DoD career functional Integrated Product Team (IPT) leads should immediately
establish a special software acquisition workforce fund modeled after the Defense Acquisition
Workforce Development Fund (DAWDF), the purpose of which is to hire and train a cadre of
modern software acquisition experts across the Services.

DSB18 Rec 5h: PMs should create an iterative development IPT with associated training. The Service
Chiefs should delegate the role of Product Manager to these IPTs.

DSB18 Rec 5b: The Service Acquisition Career Managers should develop a training curriculum to
create and train [a] cadre [of] software-informed PMs, sustainers, and software acquisition
specialists.

Sec809 Rec 27: Improve resourcing, allocation, and management of the Defense Acquisition
Workforce Development Fund (DAWDF).

Sec809 Rec. 59: Revise the Defense Acquisition Workforce Improvement Act to focus more on building
professional qualifications.

SWAP Study Final Release, 3 May 2019 S38

Additional Recommendation C3
Increase PMO Experience

Line of Effort Create new paths for digital talent (especially internal talent).
Recommendation Increase the knowledge, expertise, and flexibility in program offices

related to modern software development practices to improve the
ability of program offices to take advantage of software-centric
approaches to acquisition.

Stakeholders USD(A&S), SAE, USD(P&R)
Background Acquisition professionals do not always have experience and insights into

modern software development environments, especially in the opportunities
(and limitations) for continuous integration/continuous delivery (CI/CD),
automated testing (including security testing), and modern cloud-computing
architectures. New methodologies and approaches introduce unknown
risks, while the old acquisition and development approaches built the
world’s best military. Program offices are not incentivized to adopt new
approaches to acquisition and implementation of software, and inertia
represents a barrier to change.

Desired State Program management offices have staff available with experience in
modern software development environments and who are able to make
creative (but legal) use of available authorities for acquisition of software to
fit the needs of modern software development solutions. Management of
most types of software relies on (continuous) measurement of capability
delivered to the field rather than being tied to satisfaction of objectives.
Time and cost are used as constraints with schedule of delivery of features
replanned at each iteration cycle based on warfighter/user feedback.

Role of Congress N/A
Draft Implementation Plan Lead Stakeholders Target Date

C3.1 Establish list of skills and experience needed by
program office staff to be considered “fully staffed” for a
software program.

A&S with SAEs,
USD(P&R)

Q4 FY19

C3.2 Modify Position Descriptions for those in leadership
positions in software acquisition programs to prioritize
and reward prior experience in software development.

USD(A&S), SAE,
Service HR

Q1 FY20

C3.3 Create and provide training opportunities via boot
camps and rotations for acquisition professionals to
obtain hands-on experience in DevSecOps programs.

A&S with SAEs,
USD(P&R)

Q2 FY20
(MVP)3

FY21 (scale)
C3.4 Modify PM training requirements to obtain DAU Level

IIII certification to include hands-on experience with
modern software development.

USD(A&S), DAU Q3 FY20

C3.5 Evaluate readiness level of software (and software-
intensive) program offices by comparing experience/skill
sets available with the list of needed skills from C3.1

A&S with SAEs,
USD(P&R)

Q4 FY20
(MVP)

FY21 (scale)

3 Minimum viable product (first useful iteration)

SWAP Study Final Release, 3 May 2019 S39

(hint: consider tracking those skills sets; see Action
C1.2).

SWAP concept paper recommendations related to this recommendation
D&D Hire competent people with appropriate expertise in software to implement the desired state and

give them the freedom to do so (“competence trumps process”).

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Acq Lead tester from either DOT&E or JITC (preferably both, if JITC is being used as test org) must be

a subject matter expert in the subject being tested, similar to how qualified test pilots run test
flights (health records, financial systems, etc.).

Wkf Empower a small cadre of Highly Qualified Experts (HQEs) and innovative Department employees
to execute the changes from this report.

Wkf Establish a software acquisition workforce fund, similar to the Defense Acquisition Workforce
Development Fund (DAWDF), but the primary use will be for hiring and training a cadre of modern
software acquisition experts.

Wkf Provide Agile, Tech, and DevSecOps coaches in Program Offices to support transformations,
adoption of modern software practices, and share lessons across the enterprise.

Wkf Develop a core occupational series based on current core competencies and skills for software
acquisition and engineering.

Wkf Modify the existing language in 5 USC Part III, Subpart D, Chapter 53 to add a pilot training
program for all software acquisition professionals, developers, and associated functions.

Wkf Modify Title 10 §1746 to include authorities for the development of a modern academy under the
Defense Acquisition University; the HQE cadre (see above) should lead its development. Note:
Tied with FY18 NDAA §891 (training on agile and iterative development methods.)

Wkf Modify Title 5, §§3371-3375 to expand the Inter-Government Personnel Act and allow more civil
service employees to work with non-Federal Agencies and Educational Institutions. In addition,
modify Title 10, §1599g to expand the Public-Private Talent Exchange Program and modify the
language to reduce the “repayment” period from 1:2 to 1:1 ratio.

Related recommendations from previous studies
OSD06 Establish a consistent definition of the acquisition workforce with the Under Secretary

of Defense for Acquisition Technology and Logistics, working with the Service Secretaries
to include in that definition all acquisition-related budget and requirements personnel.

OSD06 Immediately increase the number of federal employees focused on critical skill areas, such as
program management, system engineering, and contracting. The cost of this increase
should be offset by reductions in funding for contractor support.

OSD06 Request that the White House Liaison Office create a pool of acquisition-qualified,
White House pre-cleared, non-career senior executives and political appointees to fill
executive positions, to provide leadership stability in the Acquisition System.

OSD06 Seek legislation to retain high-performance military personnel in the acquisition
workforce to include allowing military personnel to remain in uniform past the
limitations imposed by the Defense Officer Personnel Management Act and augment

SWAP Study Final Release, 3 May 2019 S40

their pay to offset the “declining marginal return” associated with retired pay entitlement.

OSD06 Realign responsibility, authority, and accountability at the lowest practical level of authority by
reintegrating the Services into the acquisition management structure.

OSD06 Fully implement the intent of the Packard Commission. Create a streamlined acquisition
organization with accountability assigned and enforced at each level.

SEI10 Assign PMs, DPMs, and other key positions for the program’s duration and
into deployment. Use civilians if military rotations are not amenable.

SEI10 Improve qualifications of acquisition staff, emphasizing software expertise.

CSIS15 Rapid acquisition succeeds when senior leaders are involved in ensuring that programs are
able to overcome the inevitable hurdles that arise during acquisition and empower those
responsible with achieving the right outcome with the authority to get the job done while
minimizing the layers in between.

CSIS15 Rapid acquisition is fundamentally an ongoing dialogue between the acquisition and operational
communities about what the real needs of the warfighter are and what the art of the possible is
in addressing them.

SEI15 5. Government Personnel Experience. Government personnel with extensive experience in
developing and managing acquisition strategy and technical architecture should be dedicated
and available to a program throughout its duration.

NPS16a The growth of rapid acquisition organizations gives acquisition executives new
avenues to meet their top priority and rapid capability demands. However, these
organizations may also have negative effects on traditional acquisition organizations. The
DoD’s top talent will flock to the rapid acquisition organizations so that they can work on high-
priority programs with minimal restrictions and likely achieve greater success.

NPS16a Contracting Officers (COs) must function as strategic partners tightly integrated into the
program office, rather than operate as a separate organization that simply processes the
contract paperwork.

NPS16b Culturally, the acquisition community needs to embrace the available tools as
opportunities, while being selective with procurement methods and adaptive to the
market environment.

GAO17 Empower program managers to make decisions on the direction of the program and to resolve
problems and implement solutions.

GAO17 Hold program managers accountable for their choices.

GAO17 Require program managers to stay with a project to its end.

GAO17 Encourage program managers to share bad news, and encourage collaboration and
communication.

DSB18 Rec 5a: The service acquisition commands (e.g., the LCMC, the NAVAIR, the U.S. Naval Sea
Systems Command (NAVSEA), and the AMC) need to develop workforce competency and a
deep familiarity of current software development techniques.

DSB18 Rec 5a.2: Services acquisition commands should use this cadre early in the acquisition process
to formulate acquisition strategy, develop source selection criteria, and evaluate progress.

DSB18 Over the next two years, the service acquisition commands need to develop workforce
competency and a deep familiarity of current software development techniques.

SWAP Study Final Release, 3 May 2019 S41

Sec809 Rec. 40: Professionalize the requirements management workforce.

Sec809 Rec. 46: Empower the acquisition community by delegating below-threshold reprogramming
decision authority to portfolio acquisition executives.

SWAP Study Final Release, 3 May 2019 S42

Additional Recommendation C4
Recruiting (Transient) Digital Talent

Line of Effort Create new paths for digital talent (especially internal talent).
Recommendation Restructure the approach to recruiting digital talent to assume that

the average tenure of a talented engineer will be 2-4 years, and make
better use of HQEs, IPAs, special hiring authorities, reservists, and
enlisted personnel to provide organic software development
capability, while at the same time incentivizing and rewarding internal
talent.

Stakeholders USD(A&S), USD(P&R), SAE, A-1/G-1/N-1
Background Current DoD personnel systems assume that military and government

employees will “grow through the ranks” and that individuals will stay in
government service for long periods of time. The attractions of the private
sector create personnel-retention challenges that are not likely to be
overcome, so a different approach is needed.

Desired State DoD leverages all individuals who are willing to serve, whether for a long
period or a short period, and amplifies the ability of individuals to make a
contribution during their time in government. Internal talent is recognized
and retained through merit-based systems of promotion and job
assignment.

Role of Congress Support and encourage the use of existing authorities to hire digital talent in
creative ways that match the intent of Congress and solve the need for
more flexible arrangements in which talented individuals move in and out of
government service (without creating unnecessary barriers).

Draft Implementation Plan Lead Stakeholders Target Date
C4.1 Exercise existing hiring authorities to increase the number

of highly skilled software people in DoD program, such as
the Cyber Excepted Workforce.

SAE, PEO, CIO Starting now

C4.2 In conjunction with Recs C1, create a database of
individuals in enlisted, officer, reserve, and civilian
positions with software development skills and experience
for internal recruiting use to software squadrons & PAOs.

USD(P&R) and
Service equivalents

Q3 FY19

C4.3 Within organic software programs, create processes for
maintaining release cadence under the assumption of up
to 25% turnover per year.

PMOs Q4 FY19

C4.4 Require software-intensive project proposals to include a
plan for maintaining cadence-related metrics in the face of
up to 25% turnover of staff.

SAEs Q4 FY19

C4.5 Identify bottlenecks in providing security clearances for
software developers and target granting of interim
clearances within 1 month of start date.

DSS Q1 FY20

C4.6 Revise GS and military promotion guidelines for software
developers to allow rapid promotion of highly qualified
individuals with appropriate skills, independent of “time in
grade.”

USD(P&R) FY20 for
FY21 NDAA

SWAP Study Final Release, 3 May 2019 S43

C4.7 Obtain additional funding for military, civilian SW
developers, including existing personnel, HQEs, IPAs,
reservists, and direct commissioning.

USD(A&S),
USD(P&R), SAE

FY21

SWAP concept paper recommendations related to this recommendation
10C Establish Computer Science as a DoD core competency.

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Wkf Develop a core occupational series based on current core competencies and skills for software

acquisition and engineering.
Wkf Overhaul the recruiting and hiring process to use simple position descriptions, fully leverage hiring

authorities, engage subject matter experts as reviewers, and streamline the onboarding process to
take weeks instead of months.

Wkf Embrace private-sector hiring methods to attract and onboard top talent from non-traditional
backgrounds that may require special authorities to join the Department.

Wkf Develop a strategic recruitment program that targets civilians, similar to the recruitment strategy for
military members, [including] prioritizing experience and skills over cookie-cutter commercial
certifications or educational attainment.

Related recommendations from previous studies
DSB87 Rec 34: Do not believe that DoD can solve its skilled personnel shortage; plan how best to live

with it, and how to ameliorate it.

SEI10 Divide large acquisition development efforts into multiple smaller, shorter
duration programs.

Sec809 Rec. 45: Create a pilot program for contracting directly with information technology consultants
through an online talent marketplace.

SWAP Study Final Release, 3 May 2019 S44

Primary Recommendation D1
Source Code Access

Line of Effort Change the practice of how software is procured and developed.
Recommendation Require access to source code, software frameworks, and

development toolchains—with appropriate IP rights—for DoD-specific
code, enabling full security testing and rebuilding of binaries from
source.

Stakeholders USD(A&S), CIO, SAE
Background For many DoD systems, source code is not available to DoD for inspection

and testing, and DoD relies on suppliers to write code for new compute
environments. As code ages, suppliers are not required to maintain
codebases without an active development contract, and “legacy” code is
not continuously migrated to the latest hardware and operating systems.

Desired State DoD has access to source code for DoD-specific software systems that it
operates and uses to perform detailed (and automated) evaluation of
software correctness, security, and performance, enabling more rapid
deployment of both initial software releases and (most importantly)
upgrades (patches and enhancements). DoD is able to rebuild executables
from scratch for all of its systems, and it has the rights and ability to modify
(DoD-specific) code when new conditions and features arise. Code is
routinely migrated to the latest computing hardware and operating systems
and routinely scanned against currently known vulnerabilities. Modern IP
language is used to ensure that the government can use, scan, rebuild,
and extend purpose-built code, but contractors are able to use licensing
agreements that protect any IP that they have developed with their own
resources. Industry trusts DoD with its code and has appropriate IP rights
for internally developed code.

Role of Congress N/A
Draft Implementation Plan Lead Stakeholders Target Date

D1.1 Work with industry to modernize policies for software
code ownership, licensing, and purchase. See 2018 Army
IP directive as an example.

USD(A&S) Q3 FY19

D1.2 Modify FAR/DFARS guidance to require software source
code deliverables for GOTS and for government-funded
software development. Obtain rights for access to source
code for COTS wherever possible (and useful).

USD(A&S) Q3 FY20

D1.3 Modify DoDI 5000.02 and DoDI 5000.75 to make access
to code and development environments the default.

USD(A&S) Q3 FY20

D1.4 Develop a comprehensive source-code management plan
for DoD including the safe and secure storage, access
control, testing, and field of use rights.

USD(A&S), with CIO Q4 FY20

SWAP concept paper recommendations related to this recommendation
10C Every purpose-built DoD software system should include source code as a deliverable.

https://drive.google.com/open?id=1Di3PXplZJXWqJsmYxvcJ6vKRvLVObCWm
https://drive.google.com/open?id=1Di3PXplZJXWqJsmYxvcJ6vKRvLVObCWm

SWAP Study Final Release, 3 May 2019 S45

D&D Require source code as a deliverable on all purpose-built DoD software contracts. Continuous
development and integration, rather than sustainment, should be a part of all contracts. DoD
personnel should be trained to extend the software through source code or API access.

Related recommendations from previous studies
DSB87 Rec 22: DoD should follow the concepts of the proposed FAR 27.4 for data rights for military

software, rather than those of the proposed DoD 27.4, or it should adopt a new “Rights in
Software” Clause as Recommended by Samuelson, Deasy, and Martin in Appendix A6.

DSB18 Rec 6b: Availability, cost, compatibility, and licensing restrictions of [the proposed software
factory] framework elements to the U.S. Government and its contractors should be part of the
selection criteria for contract award.

DSB18 Rec 6c: All documentation, test files, coding, application programming interfaces (APIs), design
documents, results of fault, performance tests conducted using the framework, and tools
developed during the development, as well as the software factory framework, should be
delivered to the U.S. Government at each production milestone; OR escrowed and delivered at
such times specified by the U.S. Government (i.e., end of production, contract reward).

DSB18 Rec 6d: Selection preference should be granted based on the ability of the United States to
reconstitute the software framework and rebuild binaries, re-run tests, procedures, and tools
against delivered software and documentation.

SWAP Study Final Release, 3 May 2019 S46

Primary Recommendation D2
Security Considerations

Line of Effort Change the practice of how software is procured and developed.
Recommendation Make security a first-order consideration for all software-intensive

systems, recognizing that security-at-the-perimeter is not enough.
Stakeholders USD(A&S), CIO, DDS, SAE, DDR&E(AC), DOT&E
Background Current DoD systems often rely on security-at-the-perimeter as a means

of protecting code for unauthorized access. If this perimeter is breached,
then a large array of systems can be compromised. Multiple GAO,
DoDIG, and other reports have identified cybersecurity as a major issue in
acquisition programs.

Desired State DoD systems use a zero-trust security model in which it is not assumed
that anyone who can gain access to a given network or system should
have access to anything within that system. Regular and automated
penetration testing is used to track down vulnerabilities, and red teams
are engaged to attempt to breach our systems before our adversaries do.

Role of Congress Review (classified) reporting of vulnerabilities identified in DoD systems
and provide the resources required to ensure that hardware and operating
systems are at current levels (see Recommendation B7, Hardware as a
Consumable).

Draft Implementation Plan Lead Stakeholders Target Date
D2.1 Adopt standards for secure software development and

testing that use a zero-trust security model.
CIO, with DDS Q3 FY19

D2.2 Develop, deploy, and require the use of IA-accredited
(commercial) development tools for DoD software
development.

CIO, PEO Digital Q4 FY19

D2.3 Establish automated and red-team based penetration
testing as part of OT&E evaluation (integrated with
program development).

DOT&E Q1 FY20

D2.4 Establish a red team responsible for ongoing
vulnerability testing against any defense software
system.

CIO with DDS Q2 FY20

D2.5 Establish security as part of the selection criteria for
software programs.

A&S with CIO, SAEs Q3 FY20

SWAP concept paper recommendations related to this recommendation

10C Only run operating systems that are receiving (and utilizing) regular security updates for newly
discovered security vulnerabilities.

10C Data should always be encrypted unless it is part of an active computation.

D&D Create automated test environments to enable continuous (and secure) integration and
deployment to shift testing and security left.

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Sec People must learn to appreciate that speed helps increase security. Security is improved when

SWAP Study Final Release, 3 May 2019 S47

changes and updates can be made quickly to an application. Using automation, software can be
reviewed quickly.

Sec The AO must also be able to review documentation and make a risk decision quickly and make
that decision on the process and not the product.

T&E Establish a statutory “Live Fire” requirement on software-intensive systems as there is on
“Covered Systems” for protecting our warfighters from kinetic threats. “Shoot at it” before design
is complete and certainly before it is put into the operational environment.

T&E Establish a federation of state-of-the-art cyber testing capabilities from non-profit institutions to
support trusted, survivable, and resilient defense systems and ensure the security of software
and hardware developed, acquired, maintained, and used by the DoD.

T&E Establish cybersecurity as the “4th leg” in measurement of Acquisition system/program
performance: Cost, Schedule, Performance, Cybersecurity.

T&E Develop mechanisms to enforce existing software and cybersecurity policies (from cradle-to-
grave) that are not (now) being adequately enforced.

T&E Ensure each DoD Component is responsible for representing its own forces and capabilities in a
digital modeling environment (e.g., M&S and digital twin), making them available to all other DoD
users, subject to a pre-defined architecture and supporting standards. DIA will represent threat
forces and capabilities in a digital form consistent with this architecture/standards. Programs are
required to use DIA-supplied threat models, unless sufficient justification is provided to use other.

Related recommendations from previous studies
DSB09 In the Services and agencies, the CIOs should also have strong authorities and responsibilities

for system certification, compliance, applications development, and innovation.

DSB09 The DOD CIO, supported by CIOs in the Services and agencies, should be responsible for
certifying that systems and capabilities added to the enterprise do not introduce avoidable
vulnerabilities that can be exploited by adversaries.

Sec809 Rec. 77: Require role-based planning to prevent unnecessary application of security clearance
and investigation requirements to contracts.

SWAP Study Final Release, 3 May 2019 S48

Primary Recommendation D3
Software Features

Line of Effort Change the practice of how software is procured and developed.
Recommendation Shift from the use of rigid lists of requirements for software programs

to a list of desired features and required interfaces/characteristics to
avoid requirements creep, overly ambitious requirements, and
program delays.

Stakeholders USD(A&S), Joint Staff, SAEs
Background Current DoD requirements processes significantly impede DoD’s ability to

implement modern SW development practices by spending years
establishing program requirements and insisting on satisfaction of
requirements before a project is considered “done.” This impedes rapid
implementation of features that are of the most use to the user.

Desired state Rather than a list of requirements for every feature, programs should
establish a minimum set of requirements required for initial operation,
security, and interoperability and place all other desired features on a list
that will be implemented in priority order, with the ability for DoD to redefine
priorities on a regular basis.

Role of Congress Modify relevant statutes to allow the use of evolving features over rigid
requirements and develop alternative methods for obtaining information on
program status (See Rec A2, Action A2.4).

Draft Implementation Plan Lead Stakeholders Target Date
D3.1 Modify requirements guidance by memo to shift from a list

of requirements for software to a list of desired features
and required interfaces/characteristics.

USD(A&S), with
CMO

Q4 FY19

D3.2 Update CJCSI 3170.01H (JCIDS requirements process)
to reflect contents of guidance memos.

Joint Staff Q1 FY20

D3.3 Modify DoDI 5000.02 and DoDI 5000.75 (or integrate into
new DoDI 5000.SW).

USD(A&S) Q2 FY20

D3.4 Define and use new budget exhibits for software
programs using evolving lists of features in place of
requirements (see also Rec A2).

USD(A&S), with
USD(C), CAPE,
HAC-D, SAC-D

Q3 FY20

SWAP concept paper recommendations related to this recommendation
10C Adopt a DevOps culture for software systems.

10C All software procurement programs should start small, be iterative, and build on success—or be
terminated quickly.

D&D Accept 70% solutions in a short time (months) and add functionality in rapid iterations (weeks).

Related recommendations from previous studies
SEI01 Ensure that all critical functional and interoperability requirements are well

specified in the contract (statement of work, Statement of Objectives).

SEI01 Handle requirements that have architectural consequences as systems engineering
issues—up front.

SWAP Study Final Release, 3 May 2019 S49

SEI12 Ensure requirements prioritization of backlog considers business value and risk.

GAO17 Match requirements to resources—that is, time, money, technology, and people—before
undertaking new development efforts.

SWAP Study Final Release, 3 May 2019 S50

Additional Recommendation D4
Continuous Metrics

Line of Effort Change the practice of how software is procured and developed.
Recommendation Create and use automatically generated, continuously available

metrics that emphasize speed, cycle time, security, user value, and
code quality to assess, manage, and terminate software programs
(and software components of hardware programs).

Stakeholders USD(A&S), CAPE, USD(C), SAE, Service Cost Orgs
Background Current program reporting requirements are largely manual and time

consuming, and they provide limited insight into the SW health of a
program. New metrics are required that match the DevSecOps approach of
continuous capability delivery and maintenance and provide continuous
insight into program progress.

Desired State Program oversight will re-focus on the value provided by the software as it
is deployed to the warfighter/user, and it will rely more heavily on metrics
that can be collect in an automated fashion from instrumentation on the
DevSecOps pipeline and other parts of the infrastructure. Specific metrics
will depend on the type of software rather than a one-size-fits-all approach.

Role of Congress N/A (but see Rec A3)
Draft Implementation Plan Lead Stakeholder Target Date

D4.1 Modify acquisition policy guidance to specify use of
automatically generated, continuously available metrics
that emphasize speed, cycle time, security, and useful
functionality.

USD(A&S) Q3 FY19

D4.2 Modify cost estimation policy guidance to specify use of
automatically generated, continuously available metrics
that emphasize speed, cycle time, security, and code.

CAPE Q3 FY19

D4.3 Develop specific measure of software quality, value, and
velocity and the tools to implement the automatic
generation and reporting.

DDS, with CAPE,
CIO, USD(C)

Q4 FY19

D4.4 Modify DoDI 5000.02, DoDI 5000.75, and DoDI 5105.84
to reflect use of updated methods and remove earned
value management (EVM) for software programs.

A&S Q1 FY20

SWAP working group inputs related to this recommendation

Acq Revise DFARS Subpart 234.201, DoDI 5000.02 Table 8, and OMB Circular A-11 to remove EVM
requirement.

Con Allow for documentation and reporting substitutions to improve agility (agile reporting vs. EVM)
(Cultural and EVM Policy).

Con Establish a clear definition of done targets for software metrics for defense systems of different
types (code coverage, defect rate, user acceptance).

D&M Congress could establish, via an NDAA provision, new data-driven methods for governance of
software development, maintenance, and performance. The new approach should require on-
demand access to standard (and perhaps real-time) data with reviews occurring on a standard

SWAP Study Final Release, 3 May 2019 S51

calendar, rather than the current approach of manually developed, periodic reports.

D&M DoD must establish the data sources, methods, and metrics required for better analysis, insight,
and subsequent management of software development activities. This action does not require
Congressional action but will likely stall without external intervention and may require explicit and
specific Congressional requirements to strategically collect, access, and share data for analysis
and decision making.

T&E Establish requirements for government-owned software to be instrumented such that critical
monitoring functions (e.g., performance, security) can be automated as much as possible,
persistently available, and such that authoritative data can be captured, stored, and reused in
subsequent testing or other analytic efforts.

Related recommendations from previous studies
DSB87 Rec 19: DoD should develop metrics and measuring techniques for software quality and

completeness and incorporate these routinely in contracts.

DSB87 Rec 20: DoD should develop metrics to measure implementation progress.

Sec809 Rec 19: Eliminate the Earned Value Management (EVM) mandate for software programs using
agile methods.

MITRE18 Elevate Security as a Primary Metric in DoD Acquisition and Sustainment.

SWAP Study Final Release, 3 May 2019 S52

Additional Recommendation D5
Iterative Development

Line of Effort Change the practice of how software is procured and developed.
Recommendation Shift the approach for acquisition and development of software (and

software-intensive components of larger programs) to an iterative
approach: start small, be iterative, and build on success or be
terminated quickly.

Stakeholders USD(A&S), CAPE, USD(C), USD(P&R), SAE, Service HR
Background Current-language DoD acquisition guidance is largely based around a

hardware-centric paradigm, with a well-defined start and end and sequential
life cycle activities.

Desired State Software acquisition in DoD follows an iterative approach, with frequent
deployment of working software, supported by a DevSecOps infrastructure
that enables speed through continuous integration/continuous delivery.
Software projects are continuously evaluated by the quality of their deployed
capability and are terminated early if they are found to be non-performant.
Software is never “complete.” Programs are viewed as an ongoing service
rather than a discrete project.

Role of Congress Authorize and track software programs that utilize iterative methods of
development rather than milestone-based progress. Recognizing that the
distinction between RTD&E, procurement, and sustainment is not
appropriate for many types of software, identify new ways of providing
oversight while enabling much more flexibility for programs.

Draft Implementation Plan Lead Stakeholders Target Date
D4.1 Issue guidance immediately changing the default for

acquisition programs to use iterative software development
methodologies (e.g., DevSecOps, agile development).

USD(A&S) Q3 FY19

D4.2 Issue guidance changing the default for acquisition
programs to be iterative software development
methodologies.

SAE Q3 FY19

D4.6 Select three software programs widely perceived to be in
dire straits and go through a program termination exercise
to identify new potential solutions and the blockers to more
effectively terminating non-performing programs.

USD A&S

Q1 FY20

D4.3 Modify DoDI 5000.02 and 5000.75 (or DoDI 5000.SW) to
reflect more iterative approaches for software development.

USD(A&S) Q2 FY20

D4.4 Modify Service acquisition policy to reflect more iterative
approaches for software development.

SAE Q2 FY20

D4.5 Build a Congressional Reporting Dashboard that would be
available to the four Defense Committees to show the
progress of DoD and Services DevSecOps programs,
including speed and cycle time, code quality, security, and
user satisfaction.

USD(A&S) Q4 FY20

SWAP Study Final Release, 3 May 2019 S53

SWAP concept paper recommendations related to this recommendation
10C Adopt a DevOps culture for software systems.

10C All software procurement programs should start small, be iterative, and build on success—or be
terminated quickly.

D&D Accept 70% solutions in a short time (months) and add functionality in rapid iterations (weeks).

D&D Take advantage of the fact that software is essentially free to duplicate, distribute, and modify.

D&D Treat software development as a continuous activity, adding functionality continuously across its
life cycle.

Visits Spend time upfront getting the architecture right: modular, automated, secure.

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Con Treat procurements as investments; “What would you pay for a possible initial capability?”

Con Leverage incentives to make smaller purchases to take advantage of simplified acquisition
procedures.

Con Use modular contracting to allow for regular investment decisions based on perceived value.

Con Streamline acquisition processes to allow for replacing poorly performing contractors.

T&E Develop the enterprise knowledge management and data analytics capability for rapid analysis/
presentation of technical RDT&E data to support deployment decisions at each iterative cycle.

Related recommendations from previous studies
OSD06 Change DoD’s preferred acquisition strategy for developmental programs from delivering 100

percent performance to delivering useful military capability within a constrained period of time,
no more than 6 years from Milestone A. This makes time a Key Performance Parameter.

OSD06 Direct changes to the DoD 5000 series to establish Time Certain Development as the
preferred acquisition strategy for major weapons systems development programs.

GAO17 Follow an evolutionary path toward meeting mission needs rather than attempting to satisfy all
needs in a single step.

GAO17 Ensure that critical technologies are proven to work as intended before programs begin. Assign
more ambitious technology development efforts to research departments until they are ready to
be added to future generations (or increments) of a product.

NDU17 Prioritize technical performance and project schedules over cost. Maintain
aggressive focus on risk identification and management across all elements of the open
system, and resolve technical problems as rapidly as possible.

DSB18 Rec 2a: [DoD programs should] develop a series of viable products (starting with MVP)
followed by successive next viable products (NVPs).

DSB18 Rec 2b: [DoD programs should] establish MVP and the equivalent of a product manager for
each program in its formal acquisition strategy and arrange for the warfighter to adopt the initial
operational capability (IOC) as an MVP for evaluation and feedback.

DSB18 Rec 3a: The MDA (with the DAE, the SAE, the PEO, and the PM) should allow multiple vendors
to begin work. A down-selection should happen after at least one vendor has proven they can
do the work, and should retain several vendors through development to reduce risk, as
feasible.

SWAP Study Final Release, 3 May 2019 S54

Additional Recommendation D6
Software Research Portfolio

Line of Effort Change the practice of how software is procured and developed.
Recommendation Maintain an active research portfolio into next-generation software

methodologies and tools, including the integration of ML and AI into
software development, cost estimation, security vulnerabilities, and
related areas.

Stakeholders USD(R&E), USD(A&S)
Background Software is essential to national security, and DoD needs to stay ahead of

adversaries on emerging SW development practices.
Desired State DoD benefits from a feedback loop between research and practice, in

areas important to retaining the ability to be able to field innovations in
software-enabled technologies. Mission needs and a practical
understanding of the acquisition ecosystem inform research programs in
emerging technologies. Results emerging from research impact the
department’s warfighting and other systems thanks to high-quality and
modular software systems, a DevSecOps infrastructure capable of moving
fast, and other enablers. Model-based engineering of software (including
“digital twin” approaches) is routinely used to speed development and
increase security.

Role of Congress N/A
Draft Implementation Plan Lead Stakeholders Target Date

D6.1 Designate a responsible person or organization to
coordinate software research activities.

USD(R&E) Q4 FY19

D6.2 Stand up a Chief Engineer for Software to direct the
implementation of next-generation software
methodologies and tools.

SAEs Q4 FY19

D6.4 Direct the Principal Civilian Deputy to the SAE to
implement the acquisition infrastructure for DevSecOps,
allowing quick incorporation of new technologies into DoD
systems, implemented by someone with software
development experience.

SAEs Q4 FY19

D6.6 Create a documented DoD Software strategy, perhaps
patterned on the DoD cyber strategy,4 with ties to other
existing national and DoD research strategies, and with
involvement of A&S and the Services.

USD(R&E) Q4 FY19

D6.5 Make acquisition data collected continuously from
DevSecOps infrastructure and tools available to
researchers with appropriate clearances, as a testbed for
AI, ML, or other technologies. (See Recs A3, D4)

USD(A&S) Q4 FY20

Related recommendations from previous studies
DSB18 Rec 7a: Under the leadership and immediate direction of the USD(R&E), the Defense Advanced

4 https://media.defense.gov/2018/Sep/18/2002041658/-1/-1/1/CYBER_STRATEGY_SUMMARY_FINAL.PDF

https://media.defense.gov/2018/Sep/18/2002041658/-1/-1/1/CYBER_STRATEGY_SUMMARY_FINAL.PDF

SWAP Study Final Release, 3 May 2019 S55

Research Projects Agency (DARPA), the SEI FFRDC, and the DoD laboratories should establish
research and experimentation programs around the practical use of machine learning in defense
systems with efficient testing, independent verification and validation (IVV), and cybersecurity
resiliency and hardening as the primary focus points.

SWAP Study Final Release, 3 May 2019 S56

Additional Recommendation D7
Transition Emerging Tools and Methods

Line of Effort Change the practice of how software is procured and developed.
Recommendation Invest in transition of emerging tools and methods from academia

and industry for creating, analyzing, verifying, and testing of software
into DoD practice (via pilots, field tests, and other mechanisms).

Stakeholders USD(A&S), USD(R&E), Service Digital PEOs
Background Software is essential to national security, and DoD needs to stay ahead of

adversaries in implementing emerging SW development practices.
Research work at universities and in the private sector, along with best
practice implementation from the private sector, can provide valuable tools
and methods to be deployed across DoD.

Desired State Development and test technology, tools, and methods that are being
created and used in the private sector and academia and are known and
visible to the PEOs Digital who enable transition into Service programs.
DoD labs are investing internally and externally to mature software
development and analysis tools.

Role of Congress N/A
Draft Implementation Plan Lead Stakeholders Target Date

D7.1 Create a community of practice, code repositories, and
other mechanisms to keep all practitioners knowledgeable
about the latest trends and capabilities in software
development, testing, and deployment.

USD(A&S) Q4 FY19

D7.2 Invest in and engage with academic and private sector
efforts to transition tools to do software engineering:
creating, analyzing, verifying, testing, and maintaining
software.

Service Digital
PEOs, USD(R&E)

FY20

SWAP working group inputs (reflected in Appendix F) related to this recommendation
Req OSD should consider identifying automated software generation areas that can apply to specific

domains.

Related recommendations from previous studies
OSD06 Direct the Deputy Director for Research and Engineering to coordinate service science and

technology transition plans with the appropriate military service.

OSD06 Direct the Deputy Director for Research and Engineering to actively participate in the Joint
Capabilities Acquisition and Divestment process to reemphasize technology push initiatives.

SWAP Study Final Release, 3 May 2019 S57

Additional Recommendation D8
Collect Data

Line of Effort Change the practice of how software is procured and developed.
Recommendation Automatically collect all data from DoD national security systems,

networks, and sensor systems, and make the data available for
machine learning (via federated, secured enclaves, not a centralized
repository).

Stakeholders USD(A&S), USD(P&R), SAE, CMO, CAPE, DOT&E, DDR&E(AC)
Background DoD discards or does not have access to significant amounts of data for

its systems and has not established an infrastructure for storing data,
mining data, or making data available for machine learning. Current
analytical efforts are siloed and under-resourced in many cases.

Desired State DoD has a modern architecture to collect, share, and analyze data that
can be mined for patterns that humans cannot perceive. Data is being
used to enable better decision-making in all facets of the Department,
providing significant advantages that adversaries cannot anticipate. Data
collection and analysis is done without compromising security, and DoD,
with minimum exceptions, should have complete data rights for all
systems (developed with industry).

Role of Congress N/A
Draft Implementation Plan Lead stakeholders Target Date

D8.1 Develop comprehensive data strategy for DoD, taking into
account future AI/ML requirements,

CDO with
USD(A&S), SAE

Q1 FY20

D8.2 Implement a minimum viable product (MVP) that collects
and analyzes the most critical data element for one or
more programs.

CDO with
USD(A&S), SAE

Q3 FY20

D8.3 Create digital data infrastructure to support collection,
storage, and processing.

CDO with
USD(A&S), SAE

Q1 FY21

D8.4 Require that all new major systems should specify a data
collection and delivery plan.

A&S Q2 FY21

D8.5 Implement data collection requirements for new sensor
and weapon system acquisition.

A&S FY21

SWAP concept paper recommendations related to this recommendation
10C All data generated by DoD systems—in development and deployment—should be stored, mined,

and made available for machine learning.

Related recommendations from previous studies
DSB18 Rec 7b: [USD(R&E)] should establish a machine learning and autonomy data repository and

exchange along the lines of the U.S. Computer Emergency Readiness Team (US-CERT) to
collect and share necessary data from and for the deployment of machine learning and autonomy.

DSB18 Rec 7c: [USD(R&E)] should create and promulgate a methodology and best practices for the
construction, validation, and deployment of machine learning systems, including architectures and
test harnesses.

SWAP Study Final Release, 3 May 2019 S58

Appendix B: Legislative Opportunities in Response to 2016 NDAA Section 805
 (Template Language for Recommendations A1 and A2)

This appendix provides a template for the type of legislative language that could represent a new
category/pathway to procure, develop, deploy and continuously improve software for DoD
applications, aligned with Recommendations A1 and A2 in Chapter 5. This template is designed
to serve as an example of how the types of changes we envision might be implemented and has
not been reviewed or endorsed by the Department. It is written to be consistent with 2016 NDAA
Section 805 (Use of alternative acquisition paths to acquire critical national security capabilities).

SEC. [???]. SPECIAL PATHWAYS FOR RAPID ACQUISITION OF SOFTWARE
APPLICATIONS AND UPGRADES.

(a) GUIDANCE REQUIRED.—Not later than [90, 180, 270] days after the date of the enactment
of this Act, the Secretary of Defense shall establish guidance authorizing the use of special
pathways for the rapid acquisition of software applications and upgrades that are intended to be
fielded within one year.

(b) SOFTWARE ACQUISITION PATHWAYS.—

(1) The guidance required by subsection (a) shall provide for the use of proven technologies
and solutions to continuously engineer and deliver capabilities in software. The objective of
an acquisition under this authority shall be to begin the engineering of new capabilities
quickly, to demonstrate viability and effectiveness of those capabilities in operation, and
continue updating and delivering new capabilities iteratively afterwards. An acquisition under
this authority shall not be treated as an acquisition program for the purpose of section 2430
of title 10, United States Code or Department of Defense Directive 5000.01.

(2) Such guidance shall provide for two rapid acquisition pathways:

(A) APPLICATIONS.—The applications software acquisition pathway shall provide for
the use of rapid development and implementation of applications and other software and
software improvements running on commercial commodity hardware (including modified
or ruggedized hardware) operated by the Department; and

(B) EMBEDDED SYSTEMS.—The embedded systems software acquisition pathway
shall provide for the rapid development and insertion of upgrades and improvements for
software embedded in weapon systems and other military-unique hardware systems.

(c) EXPEDITED PROCESS.--

(1) IN GENERAL.—The guidance required by subsection (a) shall provide for a streamlined
and coordinated requirements, budget, and acquisition process that results in the rapid
fielding of software applications and software upgrades to embedded systems in a period of

SWAP Study Final Release, 3 May 2019 S59

not more than [one year] from the time that the process is initiated. It shall also require the
collection of data on the version fielded and continuous engagement with the users of that
software, so as to enable engineering and delivery of additional versions in periods of not
more than one year each.

(2) EXPEDITED SOFTWARE REQUIREMENTS PROCESS.—

(A) Software acquisitions conducted under the authority of this provision shall not be
subject to the Joint Capabilities Integration and Development System Manual and
Department of Defense Directive 5000.01, except to the extent specifically provided in
the guidance required by subsection (a).

(B) The guidance required by subsection (a) shall provide that—

(1) Requirements for covered acquisitions are developed on an iterative basis
through engagement with the user community, and utilization of user feedback in
order to regularly define and prioritize the software requirements, as well as to
evaluate the software capabilities acquired;

(2) The requirements process begins with the identification of 1) the warfighter or
user need, 2) the rationale for how these software capabilities will support increased
lethality and/or efficiency, and 3) the identification of a relevant user community;

(3) Initial contract requirements are stated in the form of a summary-level list of
problems and shortcomings in existing software systems and desired features or
capabilities of new or upgraded software systems;

(4) Contract requirements are continuously refined and prioritized in an evolutionary
process through discussions with users that may continue throughout the
development and implementation period;

(5) Issues related to life-cycle costs and systems interoperability are considered; and

(6) Issues of logistics support in cases where the software developer may stop
supporting the software system are addressed.

(3) RAPID CONTRACTING MECHANISM.— The guidance required by subsection (a) shall
authorize the use of a rapid contracting mechanism, pursuant to which—

(A) Aa contract may be awarded within a [90-day] period after proposals are solicited on
the basis of statements of qualifications and past performance data submitted by
contractors, supplemented by discussions with two or more contractors determined to be
the most highly-qualified, without regard to price;

SWAP Study Final Release, 3 May 2019 S60

(B) a contract may be entered for a period of not more than one-year and a ceiling price
of not more than [$50 million] and shall be treated as a contract for the acquisition of
commercial services covered by the preference in section 2377 of title 10, United States
Code;

(C) a contract shall identify the contractor team to be engaged for the work, and
substitutions shall not be made during the base contract period without the advance
written consent of the contracting officer;

(D) the contractor may be paid during the base contract period on a time and materials
basis up to the ceiling price of the contract to review existing software in consultation
with the user community and utilize user feedback to define and prioritize software
requirements, and to design and implement new software and software upgrades, as
appropriate;

(E) a contract may provide for a single one-year option to complete the implementation
of one or more specified software upgrades or improvements identified during the period
of the initial contract, with a price of not more than [$100 million] to be negotiated at the
time that the option is awarded; and

(F) an option under the authority of this section may be entered on a time and materials
basis and treated as an acquisition of commercial services or entered on a fixed price
basis and treated as an acquisition of commercial products, as appropriate.

(4) EXECUTION OF RAPID ACQUISITIONS.--The Secretary shall ensure that —

(A) software acquisitions conducted under the authority of this provision are supported
by an entity capable of regular automated testing of the code, which is authorized to buy
storage, bandwidth, and computing capability as a service or utility if required for
implementation;

(B) processes are in place to provide for collection of testing data automatically from
[entity specified in (A)] and using those data to drive acquisition decisions and oversight
reporting;

(C) the Director of Operational Test and Evaluation and the director of developmental
test and evaluation participate with the acquisition team to design acceptance test cases
that can be automated using the entity specified in (A) and regularly used to test the
acceptability of the software as it is incrementally being engineered;

(D) acquisition progress is monitored through close and regular interaction between
government and contractor personnel, sufficient to allow the government to understand
progress and quality of the software with greater fidelity than provided by formal but
infrequent milestone reviews;

SWAP Study Final Release, 3 May 2019 S61

(E) an independent, non-advocate cost estimate is developed in parallel with
engineering of the software, and is based on an investment-focused alternative to
current estimation models, which is not based on source lines of code;

(F) the performance of fielded versions of the software capabilities are demonstrated
and evaluated in an operational environment; and

(G) software performance metrics addressing issues such as deployment rate and
speed of delivery, response rate such as the speed of recovery from outages and
cybersecurity vulnerabilities, and assessment and estimation of the size and complexity
of software development effort are established that can be automatically generated on a
[monthly, weekly, continuous] basis and made available throughout the Department of
Defense and the congressional defense committees.

(5) ADMINISTRATION OF ACQUISITION PATHWAY.—The guidance for the acquisitions
conducted under the authority of this section may provide for the use of any of the following
streamlined procedures in appropriate circumstances:

(A) The service acquisition executive of the military department concerned shall appoint
a project manager for such acquisition from among candidates from among civilian
employees or members of the Armed Forces who have significant and relevant
experience in modern software methods.

(B) The project manager for each large software acquisition as designated by the service
acquisition executive shall report with respect to such acquisition directly, and without
intervening review or approval, to the service acquisition executive of the military
department concerned.

(C) The service acquisition executive of the military department concerned shall evaluate
the job performance of such manager on an annual basis. In conducting an evaluation
under this paragraph, a service acquisition executive shall consider the extent to which
the manager has achieved the objectives of the acquisition for which the manager is
responsible, including quality, timeliness, and cost objectives.

(D) The project manager shall be authorized staff positions for a technical staff, including
experts in software engineering to enable the manager to manage the acquisition
without the technical assistance of another organizational unit of an agency to the
maximum extent practicable.

(E) The project manager shall be authorized, in coordination with the users of the
equipment and capability to be acquired and the test community, to make trade-offs
among life-cycle costs, requirements, and schedules to meet the goals of the acquisition.

SWAP Study Final Release, 3 May 2019 S62

(F) The service acquisition executive or the defense acquisition executive in cases of
defense wide efforts, shall serve as the decision authority for the acquisition.

(G) The project manager of a defense streamlined acquisition shall be provided a
process to expeditiously seek a waiver from Congress from any statutory or regulatory
requirement that the project manager determines adds little or no value to the
management of the acquisition.

(6) OTHER FLEXIBLE ACQUISITION METHODS.—The flexibilities provided for software
acquisition pathways under this section do not preclude the use of acquisition flexibilities
otherwise available for the acquisition of software. The Department may use other
transactions authority, broad agency announcements, general solicitation competitive
procedures authority under section 879 of the National Defense Authorization Act for Fiscal
Year 2017, the challenge program authorized by section 2359b of title 10, United States
Code, and other authorized procedures for the acquisition of software, as appropriate. Such
authorities may be used either in lieu of or in conjunction with the authorities provided in this
section.

(d) FUNDING MECHANISMS.—

(1) SOFTWARE FUND.—

(A) IN GENERAL.—The Secretary of Defense shall establish a fund to be known as the
[‘‘Department of Defense Rapid Development of Effective Software Fund’’] to provide
funds, in addition to other funds that may be available for acquisition under the rapid
software development pathways established pursuant to this section. The Fund shall be
managed by a senior official of the Department of Defense designated by the [Under
Secretary of Defense for Acquisition and Sustainment]. The Fund shall consist of
amounts appropriated to the Fund and amounts credited to the Fund pursuant to section
[???] of this Act.

(B) TRANSFER AUTHORITY.—Amounts available in the Fund may be transferred to a
military department for the purpose of starting an acquisition under the software
acquisition pathway established pursuant to this section. These funds will be used to
fund the first year of the software acquisition and provide the Department an opportunity
to field software capabilities that address newly discovered needs. A decision to
continue the acquisition on other funds will be made based upon the progress
demonstrated after the first year. Any amount so transferred shall be credited to the
account to which it is transferred. The transfer authority provided in this subsection is in
addition to any other transfer authority available to the Department of Defense.

(C) CONGRESSIONAL NOTICE.—The senior official designated to manage the Fund
shall notify the congressional defense committees of all transfers under paragraph (2).
Each notification shall specify the amount transferred, the purpose of the transfer, and

SWAP Study Final Release, 3 May 2019 S63

the total projected cost and funding based on the effort required each year to sustain the
capability to which the funds were transferred. The senior official will also notify the
congressional defense committees at the end of the one-year timeframe and report on
the fielded capabilities that were achieved. A notice under this paragraph shall be
sufficient to fulfill any requirement to provide notification to Congress for a new start.

(2) PILOT PROGRAM. The Secretary may conduct a pilot program under which funding is
appropriated in a single two-year appropriation for life-cycle management of software-
intensive and infrastructure technology capabilities conducted under the authority of this
section. The objective of the appropriation software pilot program would be to provide 1)
greater focus on managed services versus disaggregated development efforts, 2) additional
accountability and transparency for information centric and enabling technology capabilities,
and 3) flexibility to pursue the most effective solution available at the time of acquisition; 4)
much greater insight into the nature of software expenditures across the DOD enterprise; 5)
an improved ability to measure costs and program performance;

SWAP Study Final Release, 3 May 2019 S64

Appendix C: An Alternative to P-Forms and R-Forms:
How to Track Software Programs

Background. DoD’s Planning, Programming, and Budgeting System (PPBS) establishes the basis
for the budget submission to Congress. Multiple statutes, instructions, and directives must be
addressed in order to change the way the budget is put together, adjudicated, enacted and
managed. Exhibits are prepared by OSD and DoD Components to support requests for
appropriations from Congress and help justify the President’s budget. These include a number of
forms that are aligned with the existing appropriations process:

● P-Form: Procurement
● R-Form: Research, Development, Test, and Evaluation (RDT&E)
● O-Form: Operations and Maintenance
● M-Form: Military Personnel
● C-Form: Military Construction

As described by the Section 809 panel, the competing objectives of the acquisition system
make it very difficult for Congress and the Department to effectively budget and manage
defense projects, as illustrated in the following diagram (from the Section 809 panel, Volume 3):

Figure C.1. Multi-layered DoD budget environment.

In this appendix, we describe a different type of mechanism for budget management for software
programs, one that is tuned to the nature of software development. We envision this design to
reflect and be interweaved with our primary recommendations—in particular A1 (new acquisition
pathway for software) and A2 (new appropriations category for software). It could be also be used
for software programs that are making use of other pathways (e.g., traditional DoD 5000.02, mid-
tier [Sec 804] acquisition, other transaction authority [OTA] based pathways, or operations and
maintenance [O&M]).

SWAP Study Final Release, 3 May 2019 S65

Key Characteristics. It is useful to list some of the properties that the new process should satisfy
before presenting a specific approach for new methods of managing the budget for software
programs. The characteristics that we believe are most important are that the process be:

● Iterative: In proposing a new approach for approval and oversight of software programs, we
envision a process very similar to the way that software itself is developed: Congress and
DoD should articulate what their needs are for oversight and approval of software programs,
then try out different ways to gain transparency in proposing and monitoring of software
programs. Oversight processes can evolve iteratively, ultimately achieving better oversight

● Efficient: The current budget process requires the separate creation of standalone forms and
documents that are not a part of the regular information that is maintained and tracked as part
of the planning and execution of the software program. Instead, we emphasize the use of
automated and machine-readable budget information that is interoperable with financial
management tools (with translation to human-readable form when useful).

● Insightful. The process should provide insights to both DoD and Congress about the planned
and current capabilities of the program and opportunities for portfolio optimization. This
includes making use of metrics that are appropriate for software (cycle time, rollback time,
automated test coverage, etc.), extracting those metrics in an automated fashion wherever
possible, and treating software as an enduring capability.

● Electronic. Consistent with the nature of software and software development, the budget
artifacts used by Congress and DoD should be largely electronic in nature. By “electronic” we
do not mean electronic forms that are “printable” (e.g., PDF and Word files), but rather
information that is available in electronic form and requires no further processing to be
ingested into analysis systems.

Budget Information for Ongoing Software Programs. Since software is never done, the most
important budget artifacts will be those for ongoing programs. The information that is required
depends on the type of software, so we briefly describe here our advice for what information
should be most relevant in evaluating and renewing the budget of an ongoing program.

● Type A (commercial off-the-shelf apps): By its nature, ongoing expenses for COTS apps will
be based on the commercial price of the software or service. Existing mechanisms for
budgeting materials, supplies, and consumables for DoD functions should be used: usage,
spend rate, attainment of (volume) price discounts, etc. It is also important to track resources
(money and people) needed to perform upgrades made mandatory by vendor version updates
and obsolescence.

● Type B (customized software) and Type C (COTS hardware/operating system): These
classes of software represents custom software that is developed, assured, deployed, and
maintained by either organic developers or a contractor/vendor for DoD-specific purposes.
Type B software will require primarily configuration management and customization, whereas
Type C software will involve customized coding. These types of software are perhaps the least
well-suited to the traditional spiral development/hardware-focused acquisition and budgeting

SWAP Study Final Release, 3 May 2019 S66

process, since they often represent an enduring capability in which new features are
continuously added.

The diagram below shows the expected cost profile of a software program of this type, in
which the annual cost starts small (and may terminate, if not successful), rises as the software
is scaled to its full extent, and then falls as it is optimized and continuously improved.

Figure C.2. DevSecOps life cycle cost profile.

The information available as part of the budget process should reflect the following data on
the current and desired state of the program:

○ List of features implemented and those planned for future releases
○ Number of active users and level of satisfaction of the user base
○ Time required to field high priority functions (specifications → operations) or fix newly

found security holes (discovery → operations)
○ Time from code committed to code in use
○ Time required for full regression test and cybersecurity audit/penetration testing (and the

percentage of such testing that is automated)
○ Time required to restore service after outage
○ Percentage test coverage of specs/code, including percentage of tests that are automated
○ Number of bugs caught in testing versus in field use
○ Change failure rate (rollback deployed code)
○ Percentage code available to DoD for inspection/rebuild

The cost data associated with the program should include the following information:

○ The size and annual cost of the development team, along with the percentage of
programmers, designers, user interface engineers, system architects and other key
development categories.

○ The size and annual cost of the program management team, including both government
and contractor program management (if applicable).

○ Software licensing fees
○ Computing costs (including cloud services)
○ Other costs associated with the program

SWAP Study Final Release, 3 May 2019 S67

These metrics should be tracked over time, with reports of the past three years of data as well
as targets for the coming two years. Annual budget submissions should compare the projected
metrics and costs of the program from the past fiscal year with the actual metrics and costs
for that period, as well as rolling updating the time horizons to drop the oldest year of tracking
data and add the newest year of projected data.

● Type D (custom hardware and software, including embedded systems): Embedded systems
associated with custom hardware that is still in the development phase is most likely to be
reported as part of the hardware development program (using traditional budget items).
However, once the software/hardware platform and form factor has been designed then the
continued development of the software should be reported in a manner similar to Type C
(COTS hardware/operating systems).

Budget Information for New Software Programs. Creating new software programs involves
estimation of the cost of the software over at least the initial procurement and deployment phases.
Such programs should start small, be iterative, and build on success—or be terminated quickly.
Whenever possible, new software programs should have small budgets, require early
demonstration of results, and then be turned into ongoing programs (with budget justification as
described above). We remark briefly on specific considerations based on the type of software.

● Type A (commercial off-the-shelf apps) and Type B (customized software). For commercial
software of these two types, the most relevant information is the features to be provided by
the software, the number of instances of the software expected over time, and the cost of that
software (either as purchase cost or licensing costs). For Type B software, additional
information should be provided regarding the staffing needs for software configuration, in a
manner that is similar to customized software (Type C), though with less intensive
development costs.

● Type C (COTS hardware/operating system). For custom software running on commodity
hardware and operating systems, there are two primary questions that must be addressed:
(a) is the software functionality available in commercial products that meets the (primary)
needs of the Department and, if not, (b) how large should the initial development effort be in
order to create a minimum viable product (MVP) and then begin to scale the initial deployment
if successful.

For comparing customized software to commercially available software, the following
information should be provided:

○ A list of features that are desired and an indication of which of those features are available
in commercial packages versus those that are DoD-specific.

○ A list of commercial software packages providing similar functionality and the cost of
purchasing or licensing that software for initial and full-scale deployment.

○ A justification for why DoD processes cannot be adopted to the development and
operations practices of standard commercial approaches and/or why a smaller software
development program focused on interfacing DoD specific cases to commercial packages
cannot be accomplished.

SWAP Study Final Release, 3 May 2019 S68

The goal of providing this information is to ensure that commercial processes/software can be
adopted and implemented as standard business practices within DoD. If a DoD-customized
software is needed, this information also serves as a good comparison point on the rough
costs that are available for related commercial software (when it exists).

● Type D (custom hardware and software, including embedded systems): The initial phases of
development for custom hardware and software are likely to track hardware development,
although in some cases it may be possible to begin software development using emulation
and simulation. Care should be taken that embedded software truly requires custom solutions:
the trend in commercial software is to establish a layer between hardware and software that
allows software to be hardware agnostic (converting Type D into Type C). This approach is
quite prevalent in consumer electronics (smart phones and other mobile devices) and
transportation systems (automobiles, aircraft).

Software Program Budget Exhibits. Since software programs will be integrated into larger
programs and elements of larger programs will have software component, it will be necessary to
provide budget exhibits that are compatible with other budget processes used by Congress and
DoD. As described above, we believe that the primary information used for tracking ongoing
programs should be electronic in nature, and that it should be pulled from existing databases and
systems rather than compiled specifically for the budget process.

Following the format used by R-docs, we
believe that software programs budget
exhibit can be broken down into 5 levels,
as shown in the diagram to the right. Each
of the exhibits should reflect the
information described above (depending
on the type of software program) and
should exist primarily as electronic
databases whose information can be
presented in a form consistent with the
information that Congress desires.

The individual exhibits are as follows:

● S-1 Exhibits: the basic document
for presenting DoD’s software program information. The S-1 is prepared at the OSD-level,
with one exhibit for each separate software appropriation account/portfolio. Because the S-1
is a summary document, all other software exhibits submitted for a program element must
reconcile to the numbers shown on the S-1. The S-1 form should be automatically generated
from information maintained by the Component headquarters based on information provided
(electronically) be individual software program elements.

● S-2 Exhibits: feeds into the S-1 and are automatically populated to provide summary funding
information, program description, metrics, and budget justification for each software program
element.

Figure C.3. S-Form inputs.

SWAP Study Final Release, 3 May 2019 S69

● S-4 Exhibits: generate a display of major program releases. This exhibit is required for each
project. If a program element consists of only one project, then the S-4 is prepared for the
entire program element.

Multi-Element Program Budgets. For the purpose of establishing a new funding authority that will
address the continuous improvement nature of software, a coordinated set of budget exhibits
must be put in place. Capability elements that are solely software are relatively rare. The hardware
platform that the software must run on will either be provided by a different program under a
platform-as-a-service (PaaS), or involve computing hardware that is necessarily coincident to a
military vehicle (carried in a ship, aircraft, ground or space). When physical space, power, weight
and cooling needs for the computer services have to be managed at the vehicle level, a
coordination of the design and implementation of the hardware/software environment must be
established and managed over a long period—several epochs of lifespans for computer
equipment on which the continuously changing software must run. This is a fundamentally
different environment than hardware and must be accommodated in a new software budget
exhibit, at the right time of development, while managing within the appropriate form-factor.

Fortunately, the PPBS environment has a mechanism for managing this—the multi-Program
Element Project. The coordination of research (R-Form), Procurement (P-Form) and Operations
(O-Form) with software program information (electronically generated S-Form) can be
accommodated in a single project or set of projects in the PPBS. The most limiting case is the
one that requires the greatest level of coordination in software-intensive and embedded products.
The figure below shows a parallel timeline for the ideation, creation, scaling and implementation
phases of software with the spiral nature of hardware for research, engineering/manufacturing
development, procurement, operations, sustainment and disposal.

Figure C.4. Budget exhibits by program phase.

Sample Budget Exhibits. To illustrate the type of information that could be presented to Congress
as part of the budgeting process, we provide below a sample of some “S-Forms” that might be
used to describe a hypothetical software program. For the purposes of illustration, we focus here
on a Type C (custom software on commercial hardware/operating system). Other types of

SWAP Study Final Release, 3 May 2019 S70

software could make use of similar exhibits. We again emphasize that the desired state is that
these documents are automatically populated based on electronic databases used within program
offices and maintained as part of ongoing development activities.

Figure C.5. Software progress metrics and budget exhibit crosswalk

SWAP Study Final Release, 3 May 2019 S71

Appendix D: Frequently Asked Questions (FAQ)

This document captures some of the common questions and comments that we have received
as we discussed the report with various groups.

1. Haven’t all of these ideas already been recommended in previous studies? Why is this
study/report any different?

Yes, the vision for how to do software right has existed for decades and most of the best
practices that we and others have recommended are common practice in industry today.
Chapter 3 (Been There, Done Said That) summarizes previous work and provides our
assessment of why things haven’t changed. Here are the parts we think are new and different:

● The recommendations in this report serve primarily as documentation of a sequence of
iterative conversations and the real work of the report is the engagements before and after
the report is released.

● Our engagements in the process, and the iterative ways we have worked on this study
(just like good software!) have created a willing group of advocates (inside the
Department) ready to move forward. If we permit them, we believe change will occur.

● We focus on speed and cycle time as the key drivers for what needs to change and
recommend optimizing statutes, regulations, and processes to allow management and
oversight of speed at scale. This won’t fix everything, but if you optimize for speed then
many other things will improve as well (including oversight).

● This report is shorter and pithier than previous reports, so we hope people will read it.

2. Shouldn’t Congress just get out of the way and let DoD run things the way they want?

This is not the way that the Constitution works. The Legislative branch is an equal branch of
government and has a responsibility to see that the Executive branch performs its duties well
and properly uses taxpayer resources. This makes implementation of many of the ideas in
this report a challenge, but we believe that oversight of software is actually easier than
oversight of hardware, and Congress can and should take advantage of the insights provided
by optimizing speed and cycle time to perform oversight of defense software.

3. Military software is different than commercial software since lives and national security
are at stake, so we can’t just do things like they do in industry.

Not all (defense) software is the same. Some software requires different consideration in DoD
compared with industry, but some software is very much equivalent. Foreign governments
perform espionage against U.S. companies and those companies should be protecting
themselves in the same way as the U.S. government should (and in many cases, companies
are doing better at protecting their code than the government, in our experience).

And even for those types of software that are very different from what we would find in the
commercial world, the broad themes of modern software development are the same: software

SWAP Study Final Release, 3 May 2019 S72

is never done, speed and cycle time are critical measures, software is by people and for
people, and software is different from hardware. In all cases we believe that the acquisition of
software must recognize these broad themes to take advantage of the opportunities provided
by modern software development practices.

While certainly agreeing that the role of military is different, there are many areas of the private
sector in which health, economic well-being, and life safety are critically dependent on
software - aircraft, hospitals, traffic management, etc.

4. Embedded software (in weapons systems) is different than commercial software since
it is closely tied to hardware, so we can’t just do things like they do in industry.

Not all software is the same, and embedded systems have different requirements for testing
and verification that may not be present in other types of systems. The broad themes of
modern software development also hold for embedded systems: software is never done,
speed and cycle time are critical measures, software is by people and for people, and software
is different from hardware. The issue of cycle time is the one that usually raises the most
concern, but we note that embedded software can also have bugs and vulnerabilities and
figuring out how to deploy patches and updates quickly is a valuable feature (think about
hardware-coupled features in a mobile device or a Tesla as examples of where this is already
being done in industry).

5. For military systems, training is an essential element and we can’t change the software
quickly because we can’t retrain people to use the new version.

Not all software is the same and many types of software have functions that are not directly
evident to the user. Indeed, there are some types of software where you might want to update
things more slowly to avoid creating confusion for a human operating under stress and having
to rely on their training to avoid doing something wrong. For those systems, it will be important
to figure out how to couple software updates with training so that warfighters have access to
the latest version of the software that provides the functionality and security required to carry
out their mission. It is also important to continuously evolve our training regimes to take
advantage of what may be increased flexibility and adaptability of “digital natives.”

6. Providing source code to the government is a non-starter for industry. How will they
make money if they have to give the government their code?

It is critical that DoD have access to source code for purpose-build software: it is required in
order to do security scans to identify and fix vulnerabilities, and only with access to the source
code and build environment can the government maintain code over time. However, providing
source code is different than handing over the rights to do anything they want with that code.
Modern intellectual property (IP) language should be used to ensure that the government can
use, scan, rebuild, and extend purpose-built code, but contractors should be able to use
licensing agreements that protect any IP that they have developed with their own resources.

SWAP Study Final Release, 3 May 2019 S73

8. Won’t Congress simply reject modern continuous, incremental software programs
believing that “software is never done” is just an open invitation to make programs last
forever?

“Software is never done” specifically highlights that certain capabilities will be enduring, e.g.,
DoD will always need the capability to ingest data from overhead assets, process that data,
and disseminate it and the information it contains. In this situation sensors will change, new
analyses will be developed and new products will be required by decision makers. In the
traditional DoD software world, a highly defined requirement would be defined, a program
would be launched and years later a (likely) out-of-date capability would be delivered, followed
immediately by a new, large scale, highly definable requirement, blah, blah, blah. In a world
where this need will endure, a continuously funded, incrementally managed software program
works better. We must be comfortable that we will spend a certain amount of money each
year, we let the program use modern tools for delivering value to real end users incrementally,
and we measure success by real-time metrics delivered by the development infrastructure
and through direct feedback from the user community. This is the best way to provide
Congress with the oversight it deserves.

9. Have you read a P-Form and an R-Form?

We have! To us, these do not seem to be able to provide the type of insight into a software
(or software-intensive) program that would be required to make a sound judgement about
whether a program is in trouble. In addition, they appear to require substantial manual effort
to generate and that effort has relatively little added value, they are missing key metrics that
are important to understand whether a software program is on track (speed, cycle time, bugs
found in test versus in the field, etc.), and the information they contain is updated to
infrequently.

In Appendix C of our report we describe a different type of mechanism for budget submissions
for software programs, one that is tuned to the nature of software development. We believe
that it is possible to implement a mechanism for managing software program that makes use
of digitally generated information that is part of the ongoing data that are used in the software
development process and that provides improved insight into how well that program is
delivering value to the end user.

10. Government will never hire software developers that are as good as industry.

While it is certainly true that the vast majority of the highest capability software developers are
in the private sector, it is also true that we found extremely capable and dedicated people in
the Department—just not nearly enough of them. Actions as consistently detailed in our study
can help to address this gap. First, the government should continue to partner with industry
and to make use of contractors as a mechanism for obtaining the talent that it needs to develop
software that meets its needs. For those cases where it makes sense to use organic
(government) software development, the government should make use of existing or new
hiring authorities to offer salaries that are as competitive as possible. It is highly unlikely that
these will match commercial salaries, but it will show that DoD values software development

SWAP Study Final Release, 3 May 2019 S74

expertise and that it recognizes that this expertise is in high demand and short supply. On top
of this, DoD should anticipate that they will not be able to attract software developers for their
entire career. Instead, DoD should have a plan and a set of mechanisms that allow it to hire
people for shorter periods of time (e.g., 2-4 years), a period which we believe individuals who
are interested in serving their country will be willing to devote. Recommendation C4
(Recruiting (Transient) Digital Talent) provides some ideas for how this might be implemented.

11. What is the purpose of the use of commercial services guidance in the new acquisition
pathway that you propose (Recommendation A1 and Appendix B)?

Commercial item procurement was established in 1994 by Congress as a way of encouraging
new entrants into the industrial base. While the law was directed at Silicon Valley it also
included the vast majority of other types of commercial products at the time — eventually to
expand into a greater number of services. Procedures were established (under FAR Part 12)
to exempt these types of fixed price contracts from a significant portion of defense-unique
acquisition requirements. A preference was also established for the government to buy
commercial products and solutions where they existed over defense unique solutions.

The rapid contracting mechanism in Appendix B would essentially treat all purchases through
this mechanism as a commercial item covered under FAR Part 12 to limit DoD from applying
unique accounting and oversight procedures applicable to traditional defense contracts.
Defining these purchases as commercial item purchases triggers two things: (1) a purchasing
preference and (2) relief from regulatory burdens, including government-unique contract
clauses and data requirements. The purpose of this language is to ensure this favorable
treatment for the alternative acquisition pathway without requiring the contractor to make any
proof that is a “commercial” vendor.

12. Would the use of the proposed acquisition pathway (Recommendation A1) and/or
proposed appropriation category (Recommendation A2) be required for all software
programs?

No. We envision this as becoming the preferred pathway for software because it is optimized
for software. However, traditional acquisition pathways would still be available.

SWAP Study Final Release, 3 May 2019 S75

Appendix E: DIB Guides for Software

As a mechanism for obtaining feedback as it carried out its work, the SWAP study wrote a
sequence of short “concept papers” that provided a view on what software acquisition and practice
should look like. These documents were released on the DIB website
(http://innovation.defense.gov/software) and discussed in DIB public meetings. Feedback from
the DIB and other stakeholders was used to iterate on the concept papers. The current snapshot
of these papers is provided in this appendix.

List of concept papers:
1. Ten Commandments of Software
2. Metrics for Software Development
3. Do’s and Don’ts for Software
4. Detecting Agile BS
5. Is Your Development Environment Holding You Back?
6. Is Your Compute Environment Holding You Back?
7. Site Visit Observations and Recommendations
8. How To Justify Your Agile Budget

The copies of the concept papers in this appendix reflect versions in place as of the approval of
this report. We anticipate updating and augmenting these reports as the study continues into the
implementation phase. The most up-to-date versions of the concept papers can be found at
http://innovation.defense.gove/software.

http://innovation.defense.gov/software
http://innovation.defense.gove/software

SWAP Study Final Release, 3 May 2019 S76

Defense Innovation Board
Ten Commandments of Software

Executive Summary
The Department of Defense (DoD) must be able to develop and deploy software as fast or faster
than its adversaries are able to change tactics, building on commercially available tools and
technologies. Recognizing that “software” can range from off-the-shelf, non-customized software
to highly-specialized, embedded software running on custom hardware, it is critical that the right
tools and methods be applied for each type. In this context we offer the following ten
“commandments” of software acquisition for the DoD:

1. Make computing, storage, and bandwidth abundant to DoD developers and users.

2. All software procurement programs should start small, be iterative, and build on success
‒ or be terminated quickly.

3. The acquisition process for software must support the full, iterative life cycle of software.

4. Adopt a DevSecOps culture for software systems.

5. Automate testing of software to enable critical updates to be deployed in days to weeks,
not months or years.

6. Every purpose-built DoD software system should include source code as a deliverable.

7. Every DoD system that includes software should have a local team of DoD software
experts who are capable of modifying or extending the software through source code or
API access.

8. Only run operating systems that are receiving (and utilizing) regular security updates for
newly discovered security vulnerabilities.

9. Security should be a first-order consideration in design and deployment of software, and
data should always be encrypted unless it is part of an active computation.

10. All data generated by DoD systems - in development and deployment - should be stored,
mined, and made available for machine learning.

SWAP Study Final Release, 3 May 2019 S77

Motivation and Scope

The latest industry best practices for developing, fielding, and sustaining software applications
and information technology (IT) systems are substantially outpacing the US government’s
industrial-era planning, programming, budgeting, and execution system (PPBES) methods. In the
commercial software industry, there is no clear delineation between development, procurement,
and sustainment; rather it is a continuous cycle that changes rapidly. New functionality is made
available and deployed to users in months to weeks (and even days, for truly critical updates).
Existing government appropriation structures make it difficult to implement this approach in the
DoD.

Currently available commercial technology for rapidly deploying new advances in software,
electronics, networking, and other areas means that our adversaries can rapidly develop new
tactics that will be used against us. The only defense is to get inside our adversaries’ observe,
orient, decide, and act (OODA) loop, which requires the ability to rapidly develop and deploy
software into operational environments. For software that is used as part of operations, whether
it is run in the Pentagon or in the field, this will require new methods for (automated) testing and
rapid deployment of updates, patches, and new functionality.

In this document, we provide ten “commandments” (principles) for DoD software that provide an
approach to development that builds on the lessons learned in the software industry and enables
rapid deployment of software into military operations. These principles are not universal and may
not apply in all situations, but they provide a framework for improving the use of software in DoD
operations going forward that we believe will provide substantial improvements compared to the
current state of practice.

Software Types

Not all software is alike and different types of software require different approaches for
procurement and sustainment. It is important to avoid a “one size fits all” approach to weapons
systems. Acquisition practices for hardware are almost never right for software: they are too slow,
too expensive, and too focused on enterprise-wide uniformity instead of local customization.
Similarly, the process for obtaining software to manage travel is different than what is required to
manage the software on an F-35. We suggest a taxonomy with four types of software requiring
four different approaches:

● A: commercial (“off-the-shelf”) software with no DoD-specific customization required;
● B: commercial software with DoD-specific customization needed;
● C: custom software running on commodity hardware (in data centers or in the field);
● D: custom software running on custom hardware (e.g., embedded software).

While many of the principles below apply to all DoD software, some are relevant only for specific
types, as we indicate at the end of each description.

https://en.wikipedia.org/wiki/OODA_loop

SWAP Study Final Release, 3 May 2019 S78

To amplify at the extremes of this continuum of software types, we note especially the tendency
of large organizations to believe their needs are unique when it comes to software of Type A.
Business processes, financial, human resources, accounting and other “enterprise” applications
in DoD are generally not more complicated nor significantly larger in scale than those in the private
sector. Commercial software, unmodified, can be deployed in nearly all circumstances. At the
opposite end of the spectrum we recognize the highly coupled nature of real-time, mission-critical,
embedded software with its customized hardware, denoted in Type D. Examples here include
primary avionics or engine control, or target tracking in shipboard radar systems, where
requirements such as safety, target discrimination and fundamental timing considerations
demand that extensive formal analysis, test, validation and verification activities be carried out.

The DIB’s Ten Commandments of Software

Commandment #1. Make computing, storage, and bandwidth abundant to DoD developers
and users, especially in operational systems. Effective use of software requires that sufficient
resources are available for computing, storage, and communications. The DoD should adopt a
strategy for rapidly transitioning DoD IT to current industry standards such as cloud computing,
distributed databases, ubiquitous access to modernized wireless systems (leveraging commercial
standards), abundant computing power and bandwidth that is made available as a platform,
integration of mobile technologies, and the development of a DoD platform for downloading
applications. Unit cost of IT infrastructure and services should be used as a metric in track
improvements. An important metric of abundance must be the ability to actually deliver code, and
DoD must be able to count the number of programmers within an organization and make sure
that the balance of coders to managers is correct [All types]

Commandment #2. All software procurement programs should start small, be iterative, and
build on success ‒ or be terminated quickly. Good software development provides value to
the customer quickly, based on working with users starting on day one and defining success
based on customer value, not creation of code. Large software programs are doomed to fail
because of the rigidity, process, competition protests, and bureaucracy that accompany them
(typically starting with the Joint Capabilities Integration Development System (JCIDS) process).
The separation of software development into research, development, test and evaluation
(RDT&E), procurement, and operations & maintenance (O&M) appropriations (colors of money)
‒ and the use of cost-based triggers within each acquisition category (ACAT) ‒ causes delays
and places artificial limitations on the program management office’s (PMO’s) ability to quickly
meet the changing needs, resulting in increased lifetime cost of software and slower deployment.
Modern (“agile”) approaches used in commercial software development will result in faster
deployment and significant cost savings. [All types, especially B and C]

Commandment #3. The acquisition process for software must support the full, iterative life
cycle of software. Software does not age well. It must be constantly maintained and updated,
ideally in an automated fashion. The PPBES process is nominally a two (2) year timeline to
request and receive funding, with initial planning occurring five (5) years prior to actual receipt,
and funding must be requested by intent of use (RDT&E, procurement, and O&M). But this fiscal
separation does not match the process of software development, where all creation of code is

SWAP Study Final Release, 3 May 2019 S79

“development,” whether it falls within the fiscal law definition or not. As an alternative, the DoD
should make use of “level of effort” (or capacity) constructs to allow continuous development and
testing. Assume that low criticality software that is routinely used will require 10% of the
development cost to maintain (per year) and more critical software will likely require more
resources. This funding must be planned for at the time of initial development, not as an annual
allocation that could be interrupted. Enhanced software capability should never be considered
“ahead of need.” [All types]

Commandment #4. Adopt a DevSecOps culture for software systems. “DevOps” represents
the integration of software development and software operations, along with the tools and culture
that support rapid prototyping and deployment, early engagement with the end user, automation
and monitoring of software, and psychological safety (e.g., blameless reviews). “DevSecOps”
adds the integration of security at all stages of development and deployment, which is essential
for DoD applications. These techniques should be adopted by the DoD, with appropriate tuning
of approaches used by the community for mission-critical, national security applications. Open
source software should be used when possible to speed development and deployment, and
leverage the work of others. Waterfall development approaches (e.g., DoD-STD-2167A) should
be banned and replaced with true, commercial agile processes. Thinking of software
“procurement” and “sustainment” separately is also a problem: software is never “finished” but
must be constantly updated to maintain capability, address ongoing security issues and potentially
add or increase performance (see Commandment #3). [Type C; Type D when tied to iterative
hardware development and deployment methodologies]

Commandment #5. Automate configuration, testing, and deployment of software to enable
critical updates to be deployed in days to weeks, not months or years. While operational
test and evaluation (OT&E) is useful, it must not be the pacing item for deployment of software,
especially upgrades to existing software. Automated configuration management, unit testing,
software/hardware-in-the-loop (SIL/HIL) testing, continuous integration, A/B testing, usage and
issues tracking, and other modern tools of software development should be used to provide high
confidence in software correctness and enable rapid, push deployment of patches, upgrades, and
apps. Make use of modern software development tool sets that support these processes (and
other types of development stack automation and software instrumentation) to enable code
optimization and refactoring. [All types]

Commandment #6. Every purpose-built DoD software system should include source code
as a deliverable. DoD should have the rights to and be able to modify (DoD-specific) code when
new conditions and features arise. Providing source code will also allow the DoD to perform
detailed (and automated) evaluation of software correctness, security, and performance, enabling
more rapid deployment of both initial software releases and (most importantly) upgrades (patches
and enhancements). [Types C, D]

Commandment #7. Every DoD system that includes software should have a local team of
DoD software experts who are able to modify or extend the software through source code
or API access. Modern weapons systems are software-driven and utilization of those systems in
a rapidly changing environment will require that the system (software) be customizable by the

https://en.m.wikipedia.org/wiki/DOD-STD-2167A

SWAP Study Final Release, 3 May 2019 S80

user. In order to do this, all fielded DoD systems that include software must also have a local team
(responsible to the operational unit) that has the skills and permission to modify and extend the
software through either source code (Commandment #6) or application programming interface
(API) access. Local experts should have “reachback” capabilities to larger team and the ability to
pull new features into their code (and generate pull requests for features that they add which
should go back into the main codebase [repository]). [Types B, C, sometimes D]

Commandment #8. Only run modern operating systems that are receiving (and utilizing)
regular security updates for newly discovered security vulnerabilities. Outdated operating
systems are a major vulnerability and the DoD should assume that any computer running such a
system will eventually be compromised. Standard practice in industry is that security patches
should be applied within 48 hours of release, though this is probably too big a window for defense
systems. Treat software vulnerabilities like perimeter defense vulnerabilities: if there is a hole in
your perimeter and people are getting in, you need to patch the hole quickly and effectively. [Types
A, B, C]

Commandment #9. Security should be a first-order consideration in design and
deployment of software, and data should always be encrypted unless it is part of an active
computation. All data should be encrypted, whether in motion (across a network) or at rest
(memory, disk, cloud, etc). A possible exception is real-time data that is part of an embedded
control system and is being sent across an internal bus/network that is not accessible from outside
that network. [Types A, B, C and D when possible]

Commandment #10. All data generated by DoD systems ‒ in development and operations

‒ should be stored, mined, and made available for machine learning. Create a new
architecture to collect, share, and analyze data that can be mined for patterns that humans cannot
perceive. Utilize data to enable better decision-making in all facets of the Department, providing
significant advantages that adversaries cannot anticipate. Forge culture of data
collection/analysis to meet the demands of a software-centric combat environment. Such data
collection and analysis can be done without compromising security: in fact, a comprehensive
understanding of the data the DoD collects can improve security. [All types]

SWAP Study Final Release, 3 May 2019 S81

Supporting Thoughts and Recommendations

In addition to the ten principles given above, we offer the following thoughts and recommendations
for how the DoD can best take advantage of software as a force multiplier. While not directly
related to software, they are enablers for adopting the principles required for rapid development
and deployment of software.

Establish Computer Science as a DoD core competency. Do not rely solely on contractors as
the only source of coding capability for DoD systems. Instead, the DoD should recruit, train, and
retain internal capability for software development, including by service members, and maintain
this as a separate career track (like DoD doctors, lawyers, and musicians). This should
complement work done by civilians and contractors. Create new and expand existing programs
to attract promising civilian and military science, technology, engineering and math (STEM) talent.
Reach into new demographic pools of people who are interested in the work DoD does but
otherwise would not be aware of DoD opportunities. Be able to count the number of programmers
within an organization and make sure that the balance of developers to managers is correct

Use commercial process and software to adopt and implement standard business
practices within the Services. Modern enterprise-scale software has been optimized to allow
business to operate efficiently. The DoD should take advantage of these systems by adopting its
internal (non-warfighter specific) business processes to match industry standards, which are
implemented in cost-efficient, user-friendly software and software as a service [SaaS] tools.
Rather than adopt a single approach across the entire DoD, the individual Services should be
allowed to implement complementary approaches (with appropriate interoperability).

Move to a model of continuous hardware refresh in which computers are treated as a
consumable with a 2-3 year lifetime. The current approach — in which technology refreshes
take 8-10 years from planning to implementation — means that most of the time our systems are
running on obsolete hardware that limits our ability to implement the algorithms required to provide
the level of performance required to stay ahead of our adversaries. Moving to the cloud provides
a solution to this issue for enterprise and other software systems that do not operate on local or
specialized hardware. However for weapons systems, a continuous hardware refresh mentality
would enable software upgrades, crypto updates, and connectivity upgrades to be rapidly
deployed across a fleet, rather than maintaining legacy code for different variants that have
hardware capabilities ranging from 2 to 12 years old (an almost impossibly large spread of
capability in computing, storage, and communications). From a contracting perspective, this
change would require DoD to provide a stable annual budget that paid for new hardware and
software capability (see Commandment #3), but this would very likely save money over the longer
term.

SWAP Study Final Release, 3 May 2019 S82

Defense Innovation Board
Metrics for Software Development

Software is increasingly critical to the mission of the Department of Defense (DoD), but DoD
software is plagued by poor quality and slow delivery. The current state of practice within DoD is
that software complexity is often estimated based on number of source lines of code (SLOC), and
rate of progress is measured in terms of programmer productivity. While both of these quantities
are easily measured, they are not necessarily predictive of cost, schedule, or performance. They
are especially suspect as measurements of program success, defined broadly as delivering
needed functionality and value to users. Measuring the health of software development activities
within DoD programs using these obsolete metrics is irrelevant at best and, at worst, could be
misleading. As an alternative, we believe the following measures are useful for DoD to track
performance for software programs and drive improvement in cost, schedule, and performance.

Metric

Target value (by software type)5 Typical
DoD

values
for SW COTS

apps
Custom
-ized SW

COTS
HW/OS

Real-time
HW/SW

1 Time from program launch to deployment of
simplest useful functionality

<1 mo <3 mo <6 mo <1 yr 3-5 yrs

2 Time to field high priority fcn (spec → ops)

or fix newly found security hole (find → ops)
N/A

<1 wk
<1 mo
<1 wk

<3 mo
<1 wk

<3 mo
<1 wk

1-5 yrs
1-18 m

3 Time from code committed to code in use <1 wk <1 hr <1 da <1 mo 1-18 m

4 Time req’d for full regression test (automat’d)
and cybersecurity audit/penetration testing

N/A
<1 mo

<1 da
<1 mo

<1 da
<1 mo

<1 wk
<3 mo

2 yrs
2 yrs

5 Time required to restore service after outage <1 hr <6 hr <1 day N/A ?

6 Automated test coverage of specs/code N/A >90% >90% 100% ?

7 Number of bugs caught in testing vs field use N/A >75% >75% >90% ?

8 Change failure rate (rollback deployed code) <1% <5% <10% <1% ?

9 % code avail to DoD for inspection/rebuild N/A 100% 100% 100% ?

10 Number/percentage of functions implemented 80% 90% 70% 95% 100%

11 Usage and user satisfaction TBD TBD TBD TBD ?

5 Target values are notional; different types of software (SW) as defined in DIB Ten Commandments.

Acronyms defined: Commercial off-the-shelf (COTS), apps is short for applications, specs is short for
specifications, hardware/operating system (HW/OS), hardware/software (HW/SW)

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF

SWAP Study Final Release, 3 May 2019 S83

12 Complexity metrics #/type of specs # programmers
structure of code #/skill level of teams
#/type of platforms #/type deployments

Partial/
manual
tracking 13 Development plan/environment metrics

14 “Nunn-McCurdy” threshold (for any metric) 1.1X 1.25X 1.5X 1.5X each
effort

1.25X
Total $

Supporting Information

The information below provides additional details and rationale for the proposed metrics. The
different types of software considered in the document are described here in greater depth,
followed by comments on the proposed metrics, grouped into four categories: (a) deployment
rate metrics, (b) response rate metrics, (c) code quality metrics, and (d) program management,
assessment and estimation metrics.

Software Types (from DIB Ten Commandments)

Not all software is alike, and different types of software require different approaches for
development, deployment, and life-cycle management. It is important to avoid a “one size fits all”
approach to weapons systems. Acquisition practices for hardware are almost never right for
software: they are too slow, too expensive, and too focused on enterprise-wide uniformity instead
of local customization. Similarly, the process for obtaining software to manage travel is different
than what is required to manage the software on an F-35. We suggest a taxonomy with four types
of software requiring four different approaches:

● A: commercial (“off-the-shelf”) software with no DoD-specific customization required;

● B: commercial software with DoD-specific customization needed;

● C: custom software running on commodity hardware (in data centers or in the field);

● D: custom software running on custom hardware (e.g., embedded software).

Type A (COTS apps): The first class of software consists of applications that are available from
commercial suppliers. Business processes, financial management, human resources, accounting
and other “enterprise” applications in DoD are generally not more complicated nor significantly
larger in scale than those in the private sector. Unmodified commercial software should be
deployed in nearly all circumstances. Where DoD processes are not amenable to this approach,
those processes should be modified, not the software.

Type B (Customized SW): The second class of software constitutes those applications that
consist of commercially available software that is customized for DoD-specific usage.
Customizations can include the use of configuration files, parameter values, or scripted functions
that are tailored for DoD missions. These applications will generally require configuration by DoD
personnel, contractors, or vendors.

Type C (COTS HW/OS): The third class of software applications is those that are highly
specialized for DoD operations but can run on commercial hardware and standard operating
systems (e.g., Linux or Windows). These applications will generally be able to take advantage of

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF

SWAP Study Final Release, 3 May 2019 S84

commercial processes for software development and deployment, including the use of open
source code and tools. This class of software includes applications that are written by DoD
personnel as well as those that are developed by contractors.

Type D (Custom SW/HW): This class of software focuses on applications involving real-time,
mission-critical, embedded software whose design is highly coupled to its customized hardware.
Examples include primary avionics or engine control, or target tracking in shipboard radar
systems. Requirements such as safety, target discrimination, and fundamental timing
considerations demand that extensive formal analysis, test, validation, and verification activities
be carried out in virtual and “iron bird” environments before deployment to active systems. These
considerations also warrant care in the way application programming interfaces (APIs) are
potentially presented to third parties.

Types of Software Metrics
Deployment Rate Metrics

Overview: Consistent with previous Defense Innovation Board (DIB) commentary, and software
industry best practices, an organizational mentality that prioritizes speed is the ultimate
determinant of success in delivering value to end users. An approach to software development
that privileges speed over other factors drives efficient decision-making processes; forces the use
of increased automation of development and deployment processes; encourages the use of code
that is machine-generated as well as code that is correct-by-construction; relies heavily on
automated unit and system level testing; and enables the iterative, deliver-value-now mentality of
a modern software environment. Thus we list these metrics first.

Metric

Target value (by software type) Typical
DoD

values
for SW COTS

apps
Custom
ized SW

COTS
HW/OS

Real-time
HW/SW

1 Time from program launch to deployment of
simplest useful functionality

<1 mo <3 mo <6 mo <1 yr 3-5 yrs

2 Time to field high priority fcn (spec → ops)

or fix newly found security hole (find → ops)
N/A

<1 wk
<1 mo
<1 wk

<3 mo
<1 wk

<3 mo
<1 wk

1-5 yrs
1-18 m

3 Time from code committed to code in use <1 wk <1 hr <1 da <1 mo 1-18 m

Background: These measures capture the rate at which new functions and changes to a
software application can be put into operation (in the field):

1. The time from program launch to deployment of the “simplest useful functionality” is an
important metric because it determines the first point at which the code can start doing useful
work and also at which feedback can be gathered that supports refinement of the features.
There is a tendency in DoD to deliver code only once it has met all of the specifications, but
this can lead to significant delays in providing useful code to the user. We instead advocate

SWAP Study Final Release, 3 May 2019 S85

getting code in the hands of the user quickly, even if it only solves a subset of the full
functionality. Something is better than nothing, and user feedback often reveals omissions in
the specifications and can refine the initial requirements. As code becomes more customized,
this interval of time might extend due to the need to run more complex tests to ensure that all
configurations operate as expected, and that complex timing and other safety/mission-critical
specifications are satisfied. It is important to note that this metric is not just about coding time.
It also measures the time required to process and adjudicate the changes (including release
approval), often the most time-consuming part of providing new or upgraded functionality.

2. Once the code is deployed, it is possible to measure the amount of time that it takes to make
incremental changes that either implement new functions or fix issues that have been
identified. The importance of the functionality or severity of the error will determine how quickly
these changes should be made, but it should be possible to deploy high priority code updates
much more quickly and in much smaller increments than typical DoD “block” upgrades. A
similar measure to the time it takes to deploy code to the field is deployment frequency.
Deployment frequency can be on-demand (multiple per day), once per hour, once per day,
once per week, etc. Faster deployment frequency often correlates with smaller batch sizes.

3. The time from which code is committed to a repository until it is available for use in the field is
referred to as “lead time,” and good performance on this metric is a necessary condition for
rapid evolution of delivered software functionality. Shorter product delivery times demand
faster feedback, which enables tighter coupling to user needs. For commercially available
applications, the lead time will be based on vendor deployment processes and may be slower
than what is needed for customized code, be it for commercial hardware/operating systems
or custom hardware. However, we believe that in the selection of commercial software,
emphasis should be given to the vendor’s iteration cycles and lead time performance.
Embedded code will often require much more extensive testing before it is deployed, and
therefore its lead time may be longer.

Response Rate Metrics

Overview: Our philosophy is that delivering a partial solution to the user quickly is almost always
better than delivering a complete or perfect solution at the end of a contract, on the first attempt.
Consistent with that, mistakes will occur. No software is bug-free, and so it is unrealistic and
unnecessary to insist on that, except where certain safety matters are concerned.6 Code that
does most things right will still be useful while a patch is being identified and fielded. How
gracefully software fails, how many errors are caught and resolved in testing, and how rapidly
developers patch bugs are excellent measures of software development prowess.

6 The Department and its suppliers (due to the requirements of the contracts to which they are bound) often
resort to blanket pronouncements about safety and security, which often lead to applying the most extreme
measures even when not needed; this risk-averse approach to treating everything as a grave risk to cyber
security or safety has been labeled by the DIB as a “self-denial of service attack.” While cybersecurity is
clearly critical for software systems, the Department needs to rely on product managers who use judgment
to make subtle, nuanced, and risk-based judgments about trade-offs during the software development
process.

SWAP Study Final Release, 3 May 2019 S86

Metric

Target value (by software type) Typical
DoD

values
for SW COTS

apps
Custom
ized SW

COTS
HW/OS

Real-time
HW/SW

4 Time required for full regression test
(automated) and cybersecurity
audit/penetration testing7

N/A
 <1 mo

<1 da
<1 mo

<1 da
<1 mo

<1 wk
<3 mo

2 yrs
2 yrs

5 Time required to restore service after outage <1 hr <6 hr <1 day N/A8 ?

Background: These two metrics are intended for “generic” software programs with moderate
complexity and criticality. Their purpose is to:

4. Measure the ability to conduct more complete functional tests of the full software suite (e.g.,
regression tests) in a timely fashion, to identify problems in deployed software that can be
quickly corrected, and to restore service after an incident such as an unplanned outage or
service impairment, occurs (also called “mean time to repair,” (MTR)).

5. Track the time required to resolve an interruption to service, including a bad deployment.

Code Quality Metrics

Overview: These metrics are intended to be used as a measure of the quality of the code and to
focus on identifying errors in the code, either at the time of development (e.g., via unit tests) or in
the field.

Metric

Target value (by software type) Typical
DoD

values
for SW

COTS
apps

Custom
ized SW

COTS
HW/OS

Real-time
HW/SW

6 Automated test coverage of specs/code N/A >90% >90% 100% ?

7 Number of bugs caught in testing vs field use N/A >75% >75% >90% ?

8 Change failure rate (rollback deployed code) <1% <5% <10% <1% ?

9 % code avail to DoD for inspection/rebuild N/A 100% 100% 100% 0%

7 The two different response rate metrics for different types of software reflect the level of complexity of the
software, the likely resources available to identify and fix problems, and the level of integration of the
hardware and software.
8 We note that for embedded systems, which must be running at all times and which are updated much
less frequently, the notion of “restoring” service is not directly applicable.

SWAP Study Final Release, 3 May 2019 S87

Background:

6. Automated developmental tests provide a means of ensuring that updates to the code do not

break previous functionality and that new functionality works as expected. Ideally, for each
function that is implemented, a set of automated tests will be constructed that cover both the
specification for what the performance should achieve as well as the code that is used to
implement that function.

7. The percentage of specifications tested by the automated test suite provides rapid confidence
that a software change has not caused some specification to fail, as well as confidence that
the software does what it is supposed to do. Test coverage of the code is a common metric
for software test quality and one that most software development environments can compute
automatically (e.g., in a continuous integration (CI) workflow, each commit and/or pull request
to a repository would run all the automated developmental tests and compute the percentage
covered). For customized software and applications that run on commercial hardware and
operating systems, 90% unit test coverage is a good target. Embedded code should strive for
100% coverage (i.e., no “dark” code) since it is often safety- or mission-critical.9 The focus of
these metrics is on developmental tests, as operational testing is important, but expensive, so
it is far less expensive to find and fix defects through developmental testing.

8. Developmental tests do not cover every conceivable situation in which an application might
be used, so errors will be discovered in the field. The percent of bugs caught in testing (via
unit tests or regression tests) versus those caught in the field provide a measure of the both
the quality of the code and the thoroughness of the testing environment. Bugs discovered late
in the development cycle or after deployment can “cost” an order of magnitude more than
early bugs (in terms of time to fix and impact to a program), and a software system that is
mature finds many more bugs during testing and few in the field. Late bugs are particularly
expensive when fixing those bugs can require hardware changes, and so code running on
custom hardware should be tested more strenuously. Bugs should be prioritized by severity
and the trends over time for serious bugs should be monitored and used to drive changes in
the test environment and software development process.

9. When bugs do occur, it may be necessary to roll back the deployed code and return to an
earlier version. Change fail percentage is the percentage of changes to production that fail,
including software releases and infrastructure changes. This should include changes that
result in degraded service or subsequently require remediation, such as those that lead to
service impairment or outage, or require a hotfix, rollback, fix-forward, or patch. For COTS
applications, this should occur rarely because the amount of testing done by the vendor,
including test deployments to beta users, will typically be very high. There may be a higher
change failure rate as the application becomes more customized—because it can be difficult
to test for issues where there is a variety of hardware configurations operating in the field, for
example—but for embedded code, the change failure rate should be small, due to the more
safety-critical nature of that code leading to more emphasis on up-front testing.

Functionality metrics

Overview: These metrics are intended to capture how useful the software program is in terms of
delivering value to the field. We envision that a software program will have a number of desired

9 Safety- or mission-critical software often strives for more rigorous test coverage metrics, such as high
branch coverage or in some cases high modified condition/decision coverage (MC/DC).

SWAP Study Final Release, 3 May 2019 S88

features that define its functionality. Software should be instrumented so that the use of those
features is measured and, when appropriate, users of the software should be monitored or
surveyed to determine their use of/satisfaction with the software.

Metric

Target value (by software type) Typical
DoD

values
for SW COTS

apps
Custom
-ized SW

COTS
HW/OS

Real-time
HW/SW

10 Number/percentage of functions implemented 80% 90% 70% 95% 100%

11 Usage and user satisfaction TBD TBD TBD TBD ?

Background:

10. An ongoing software program will have some number of functions that it performs and a list
of additional functions that are to be added over time. These new functions could be feature
requires from users or desired features generated by the program office that are on the list for
consideration to be implemented next. Keeping track of these features and the rate at which
they are implemented provides a measure of the delivery of functionality to the user. This
specific way in which functionality is measured will be dependent on the type of software being
developed.

11. For software that is used by a person, the ultimate metric is whether the software is helping
that person get useful work done. Keeping track of the usage of the software (and different
parts of the software) can be done by instrumenting the code and keeping track of the data it
generates. To determine whether or not the software is providing good value to the person
who is using it, surveying the user may be the most direct mechanism (similar to rating
software that you use on a computer or smart phone).

Program Management, Assessment, and Estimation Metrics

Overview: The final set of metrics are intended for management of software programs, including
cost assessment and performance estimation. These metrics describe a list of “features”
(performance metrics, contract terms, project plans, activity descriptions) that should be required
as part of future software projects to provide better tools for monitoring and predicting time, cost,
and quality. In its public deliberations regarding software acquisition and practices, the DIB has
described how metrics of this type might be used to estimate the cost, schedule, and performance
of software programs.

Metric

Target value (by software type) Typical
DoD

values
for SW

COTS
apps

Custom
ized SW

COTS
HW/OS

Real-time
HW/SW

12 Complexity metrics #/type of specs # programmers
structure of code #/skill level of teams
#/type of platforms #/type deployments

Partial/
manual
tracking 13 Development plan/environment metrics

SWAP Study Final Release, 3 May 2019 S89

14 “Nunn-McCurdy” threshold (for any metric) 1.1X 1.25X 1.5X 1.5X each
effort

1.25X
Total $

Background:

12. Structure of specifications, code, and development and execution platforms.

To measure the complexity of a software program, and therefore assess the cost, schedule
and performance of that program, a number of features must be measured that capture the
underlying “structure” of the application. The use of the term “structure” is intentionally flexible,
but generally includes properties such as size, type, and layering. Examples of features that
can be captured that related to underlying complexity include:

● Structure of specifications: Modern specification environments (e.g., application life-cycle
management [ALM] tools) provide structured ways of representing specifications, from
program level requirements to derived specifications for sub-systems, or individual teams.
The structure represented in these tools can be used as a measure of the difficulty of the
application that is being designed.

● Level and type of user engagement during application development: How much time do
developers spend with users, especially early in the program? How many developers are
“on site” (in the same organization and/or geographic location as the end user)?

● Structure of the code base (software architecture): Modern software development
environments allow structured partitioning of the code into functions, libraries/frameworks,
and services. The structure of this partitioning (number of modules, number of layers, and
amount of coupling between modules and layers) can provide a measure of the complexity
of the underlying code.

● The amount of reuse of existing code, including open source code: In many situations
there are well-maintained code bases that can be used to quickly create and scale
applications without rewriting software from scratch. These libraries and code frameworks
are particularly useful when using commodity hardware and operating systems, since the
packages will often be maintained and expanded by others, leveraging external effort.

● Structure of the development platform/environment: This includes the software
development environments that are being used, the types of programming methodologies
(e.g., XP, agile, waterfall, spiral) that are employed, and the level of maturity of the
programming organization (ISO, CMMI, SPICE).

● Structure of the execution platform/environment: The execution environment can have an
impact on the ability to emulate the execution environment within the development
environment, as well as the portability of applications between different execution
environments. Possible platforms include various cloud computing environments as well
as platform-as-a-service (PaaS) environments that support multiple cloud computing
vendors.

13. Structure and type of development and operational environment.

SWAP Study Final Release, 3 May 2019 S90

To predict and monitor the level of effort required to implement and run a software application,
measurement of the development and operation environments is critical. These
measurements include the structure of those environments (e.g., waterfall versus spiral
versus agile, use of continuous integration tools, integrated tools for issue tracking/resolution,
code review mechanisms), the tempo of development and delivery, and use of the functionality
provided by the application. Example of features that can be captured that relate to the
structure and type of development and operation use:

● Number and skill level of programmers on the development team
● Number of development platforms used across the project
● Number of subcontractors or outside vendors used for application components
● Number and type of user operating environments (execution platforms) supported
● Rate at which major functions (included in specifications) are delivered and updated
● Rate at which the operational environment must be updated (e.g., hardware refresh rate)
● Rate at which the mission environment changes (driving changes to the code)
● Number (seats or sites) and skill level of the users of the software

14. Tracking software program progress

To properly manage the continuous development and deployment of software, DoD should
be able to track the metrics above with minimal additional effort from the programmers
because this information should be gathered and transmitted automatically through the
development, deployment, and execution environments, using automated tools. Some
examples of the types of metrics that are readily available include commit activity data
(number and rate of commits), team size, number of commenters (on pull requests), number
of pull request mergers, average and standard deviation of the months in which there was
development activity, average and standard deviation of the number of commits per month.

Thresholds should be established to determine when management attention is required, but
also when a program is so far off its initial plan that it should be re-evaluated. Today’s “Nunn-
McCurdys” or “Critical Changes” refer to breaches in cost or schedule thresholds. The current
25% unit cost growth and 50% total program cost growth thresholds often will not make sense
for continuously developed software programs.

An alternative to cost-based thresholds is to establish thresholds based on the metrics listed
above, with different thresholds for different types of software. A notion of a “Nunn-McCurdy
type breach” for software programs based on some of the above performance metrics
recorded at lower levels of effort or on specific applications could serve as better means of
identifying major issues earlier in a program. Commercially available software, with or without
customization, should be the easiest type for which to establish accurate metrics, since it
already exists and should be straightforward to purchase and deploy. Metrics for customized
software running on either commercial or DoD-specific hardware is likely to be more difficult
to predict, so a higher threshold can be used in those circumstances.

SWAP Study Final Release, 3 May 2019 S91

Defense Innovation Board Do’s and Don’ts for Software

This document provides a summary of the Defense Innovation Board’s (DIB’s) observations on
software practices in the DoD and a set of recommendations for a more modern set of
acquisition and development principles. These recommendations build on the DIB’s “Ten
Commandments of Software.” In addition, we indicate some of the specific statutory, regulatory,
and policy obstacles to implementing modern software practices that need to be changed.

Executive Summary

Observed practice (Don’ts) Desired state (Do’s) Obstacles

Defense Acquisition University, June 2010

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
(modifications licensed CC-BY-SA)

10 U.S.C. §2334
10 U.S.C. §2399
10 U.S.C. §2430
10 U.S.C §2433a
10 U.S.C. §2460
10 U.S.C. §2464

DODI 5000.02,
par 5.c.(2) and
5.c.(3)(c)-(d)

Spend 2 years on excessively
detailed requirements development

Require developers to meet with end
users, then start small and iterate to
quickly deliver useful code

DODI 5000.02,
par 5.c.(2)

CJCSI 3170.01I
App A.1.b

Define success as 100% compliance
with requirements

Accept 70% solutions10 in a short time
(months) and add functionality in rapid
iterations (weeks)

10 U.S.C. §2399

OMB Cir A-11
pp 42-43

Require OT&E to certify compliance
after development and before
approval to deploy

Create automated test environments to
enable continuous (and secure) integra-
tion and deployment to shift testing left

10 U.S.C. §139b/d
10 U.S.C. §2399

Cultural

Apply hardware life-cycle
management processes to software

Take advantage of the fact that software
is essentially free to duplicate, distribute,
and modify

10 U.S.C. §2334
10 U.S.C. §2399
10 U.S.C. §2430
48 CFR 207.106
DODI 5000.02

Require customized software
solutions to match DoD practices

For common functions, purchase existing
software and change DoD processes to
use existing apps

Culture

10 70% is notional. The point is to deliver the simplest, most useful functionality to the warfighter quickly.

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://www.law.cornell.edu/uscode/text/10/2334
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/uscode/text/10/2431a
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2464
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
http://www.jcs.mil/Portals/36/Documents/Library/Instructions/3170_01a.pdf?ver=2016-02-05-175022-720
http://www.jcs.mil/Portals/36/Documents/Library/Instructions/3170_01a.pdf?ver=2016-02-05-175022-720
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/139
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2334
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/cfr/text/48/207.106

SWAP Study Final Release, 3 May 2019 S92

Use legacy languages and operating
systems that are hard to support and
insecure

Use modern software languages and
operating systems (with all patches up-
to-date)

10 U.S.C. §2334

DoDI 5000.02,
Enclosure 11

Culture

Evaluate cyber security after the
systems have been completed,
separately from OT&E

Use validated software development
platforms that permit continuous
integration & evaluation (DevSecOps)

DOT&E Memos

Culture

Consider development and
sustainment of software as entirely
separate phases of acquisition

Treat software development as a
continuous activity, adding functionality
across its life cycle

10 U.S.C. §2399
10 U.S.C. §2430
10 U.S.C. §2460
10 U.S.C. §2464

DODI 5000.02,
par 5.c.(2) and
5.c.(3)(c)-(d)

Depend almost entirely on outside
vendors for all product development
and sustainment

Require source code as a deliverable on
all purpose-built DoD software contracts.
Continuous development and integration,
rather than sustainment, should be a part
of all contracts. DoD personnel should be
trained to extend the software through
source code or API access11

Culture

(no apparent
statutory obstacle)

FAR/DFARS
technical data

rights

Turn documents like this into a
process and enforce compliance

Hire competent people with appropriate
expertise in software to implement the
desired state and give them the freedom
to do so (“competence trumps process”)

Culture

11 As noted in the DIB’s 10 Commandments of Software

https://www.law.cornell.edu/uscode/text/10/2334
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc268
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc268
https://dzone.com/refcardz/introduction-to-devsecops?chapter=3
https://www.govinfo.gov/content/pkg/USCODE-2017-title10/html/USCODE-2017-title10-subtitleA-partIV-chap141-sec2399.htm
https://www.law.cornell.edu/uscode/text/10/2430
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2464
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF

SWAP Study Final Release, 3 May 2019 S93

Supporting Information
The information below, broken out by entry in the executive summary table (see table E.8
above), provides additional information and a rationale for each desired state.

Don’t Do

Defense Acquisition University, June 2010

https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg

The DoD 5000 process, depicted on the left in figure E.1, provides a detailed DoD process for
setting requirements for complex systems and ensuring that delivered systems are compliant
with those requirements. The DoD’s “one size fits all” approach to acquisition has attempted to
apply this model to software systems, where it is wholly inappropriate. Software is different than
hardware. Modern software methods make use of a much more iterative process, often referred
to as “DevOps,” in which development and deployment (operations) are a continuous process,
as depicted on the right. A key aspect of DevOps is continuous delivery of improved
functionality through interaction with the end user.

Why this is hard to do, but also worth doing:12

● DoD 5000 is designed to give OSD, the Services, and Congress some level of visibility
and oversight into the development, acquisition, and sustainment of large weapons
systems. While this directive may be useful for weapons systems with multi-billion dollar
unit costs, it does not make sense for most software systems.

● While having one consistent procurement process is desirable in many cases, the cost
of using that same process on software is that software is delivered late to need, costs
substantially more than the proposed estimates, and cannot easily be continuously
updated and optimized.

● Moving to a software development approach will enable the DoD to move from a specify,
develop, acquire, sustain mentality to a more modern (and more useful) create, scale,
optimize (DevOps/DevSecOps) mentality. Enabling rapid iteration will create a system in
which the United States can update software at least as fast as our adversaries can
change tactics, allowing us to get inside their OODA loop.

12 These comments and the similar ones that follow for other area were obtained by soliciting feedback on
this document from people familiar with government acquisition processes and modern software
development environments.

Acronyms defined: Office of the Secretary of Defense (OSD), OODA is short for the decision cycle of
Observe, Orient, Decide, and Act.

http://acqnotes.com/wp-content/uploads/2014/09/DoD-Instruction-5000.02-The-Defense-Acquisition-System-10-Aug-17-Change-3.pdf

SWAP Study Final Release, 3 May 2019 S94

Don’t Do

Spend 2 years on excessively detailed
requirements development

Require developers to meet with end users, then
start small and iterate to quickly deliver useful code

Define success as 100% compliance to
requirements

Accept 70% solutions in a short time (months) and
add functionality in rapid iterations (weeks)

Developing major weapons systems is costly and time consuming, so it is important that the
delivered system meets the needs of the user. The DoD attempts to meet these needs with a
lengthy process in which a series of requirements are established, and a successful program is
one that meets those requirements (ideally close to the program’s cost and schedule estimates).
Software, however, is different. When done right, it is easy to quickly deploy new software that
improves functionality and, when necessary, rapidly rollback deployed code. It is more useful to
get something simple working quickly (time-constrained execution) and then exploit the ability to
iterate rapidly in order to get the remaining desired functionality (which will often change in any
case, either in response to user needs or adversarial tactics).

Why this is hard to do, but also why it is worth doing:

● Global deployment of software on systems which are not always network-connected
(e.g., an aircraft carrier or submarine underway) introduces very real problems around
version management, training, and wisely managing changes to mission-critical
systems.

● In the world of non-military, consumer Internet applications, it is easy to glibly talk about
continuous deployment and delivery. In these environments, it is easy to execute and
the consequences for messing up (such as making something incredibly confusing or
hard to find) are minor. The same is not always true for DoD systems—and DoD
software projects rarely offer scalable and applicable solutions to address the need for
continuous development.

● Creating an approach (and the supporting platforms) that enables the DoD to achieve
continuous deployment is a non-trivial task and will have different challenges than the
process for a consumer Internet application. The DoD must lay out strategies for
mitigating these challenges. Fortunately, there are tools that can be build upon: many
solutions have already been developed in consumer industries that require failsafe
applications with security complexities.

● Continuous deployment depends on the entire ecosystem, not just the front-end
software development.

● Make sure to focus on product design and product management, which prioritizes
delivery of capability to meet the changing needs of users, rather than program/project
management, which focus on execution against a pre-approved plan. This shift is key to
user engagement, research, and design.

SWAP Study Final Release, 3 May 2019 S95

Don’t Do

Require OT&E to certify compliance after
development and before approval to deploy

Create automated test environments to enable
continuous (and secure) integration and deployment
to shift testing left

Evaluate cyber security after the system has
been completed, separately from OT&E

Use validated software development platforms that
permit continuous integration and evaluation

Why this is hard to do, but also worth doing:

● The DoD typically performs a cyber evaluation on software only after delivery of the
initial product. Modern software approaches have not always explicitly addressed cyber
security (though this is changing with “DevSecOps”). This omission has given DoD
decision-makers an easy “out” for dismissing recommendations (or setting up
roadblocks) for DevOps strategies like continuous deployment. Cyber security concerns
must be addressed head on, and in a manner that demonstrates better security in
realistic circumstances. Until then, change is unlikely.

● More dynamic approaches to address the cyber security concerns must be developed
and implemented through some amount of logic and a fair bit of data. Case studies of
red teaming also help: Hack the Pentagon should be able to provide some true
examples that generate concern. It may be necessary to obtain access to some
additional good data that goes beyond what corporations are willing to share publicly.

● To succeed, it will be important not to assume that it will be clear how these
recommendations solve for all cyber security concerns. Recommendations should make
explicit statements about what can be accomplished, taking away the reasons to say
“no.”

Don’t Do

Apply hardware life-cycle management processes
to software

Take advantage of the fact that software is
essentially free to duplicate, distribute, and modify

Consider development and sustainment of
software as entirely separate phases of acquisition

Treat software development as a continuous
activity, adding functionality across its life cycle

Why this is hard to do, but also worth doing:

● Program of record funding is specifically broken out into development and sustainment.
These distinct categories of appropriations lead program managers and acquisition
professionals to the conclusion that new functionality can only be added within
development contracts and that money allocated for sustainment cannot be used to add
new features. Vendor evaluation for development and sustainment contracts are
different; vendors on sustainment contracts often do not have the same development
competencies and frequently are not the people who built the original system. To create
an environment that will support a DevOps/DevSecOps approach, DoD Commands and
Services should jointly own the development and maintenance of software with
contractors who provide more specialized capabilities. Contracts for software should
focus on developing and deploying software (to operations) over the long term, rather

SWAP Study Final Release, 3 May 2019 S96

than the typical, sequential approach - “acquiring” software followed by “sustaining” that
software.

Don’t Do

Require customized software solutions to match
DoD practices

For common functions, purchase existing software
and change DoD processes to use existing apps

Business processes, financial, human resources, accounting and other “enterprise” applications
in the DoD are generally not more complicated nor significantly larger in scale than those in the
private sector. Commercial software, unmodified, should be deployed in nearly all
circumstances. Where DoD processes are not amenable to this approach, those processes
should be modified, not the software. Doing so allows the DoD to take advantage of the much
larger commercial base for common functions (e.g., Concur has 25M active users for its travel
software).

Don’t Do

Use legacy languages and operating systems
that are hard to support and insecure

Use modern software languages and operating
systems (with all patches up-to-date)

Modern programming languages and software development environments have been optimized
to help eliminate bugs and security vulnerabilities that were often left to programmers to avoid
(an almost impossible endeavor). Additionally, outdated operating systems are a major security
vulnerability and the DoD should assume that any computer running such a system will
eventually be compromised.13 Standard practice in industry is to apply security patches within
48 hours of release, though even this is probably too big a window for defense systems. Treat
software vulnerabilities like perimeter defense vulnerabilities: if there is a hole in your perimeter
and people are getting in, you need to patch the hole quickly and effectively.

Why this is hard to do, but also worth doing:

● DoD looks at the cost of upgrading hardware as a major cost that is tied to
“modernization.” But hardware should be thought of as a consumable like any other,
such as fuel and parts, that must be continually replaced for a weapon system to
maintain operational capability. This change would require DoD to provide a stable
annual budget that paid for new hardware and software capability.

● The advantage of using modern hardware and operating systems on DoD systems are
manifold: better security, better functionality, reduced (unit) costs, and lower overall
maintenance costs.

13 See the DIB 10 Commandments of Software supporting thoughts and recommendations. “Move to a
model of continuous hardware refresh in which computers are treated as a consumable with a 2-3 year
lifetime.”

https://media.defense.gov/2018/Apr/22/2001906836/-1/-1/0/DEFENSEINNOVATIONBOARD_TEN_COMMANDMENTS_OF_SOFTWARE_2018.04.20.PDF

SWAP Study Final Release, 3 May 2019 S97

Don’t Do

Turn documents like this into a process and
enforce compliance

Hire competent people with appropriate expertise in
software to implement the desire state and give them
the freedom to do so (“competence trumps process”)

Why this is hard to do, but also why it is worth considering doing it:

● Good engineers want to build things, not just write and evaluate contracts. If their jobs
are mainly contracting or monitoring, their software skills will quickly become outdated.
This can be solved in the short term by a rotational program: do not allow programmers
to stay in contracting for more than 4 years, so their technical capabilities are current.

● The government must team with commercial companies to ensure that it has access to
the collection of talent required to develop modern software systems, as well as develop
internal talent. The DoD should increase its use of contractors whose aim is not just to
provide software, but to increase the software development capabilities and competency
of the department. By making use of enlisted personnel, reservists, contractors, and
other resources, it is possible to create and maintain highly effective teams who
contribute to national security through software development.

Additional Obstacles
In addition to the specific obstacles listed above, we capture here a collection of statutes,
regulations, processes and cultural norms that are impediments to implementing a modern set
of software acquisition and development principles.

Statutes
The statutes below provide examples of impediments to the implementation of modern software
development practices in DoD systems.

Acquisition strategy (10 U.S.C §2431a): 2431a(d) establishes the review process for major
defense acquisition programs and is written around the framework of waterfall development for
long timescale, hardware-centric programs. In particular, this statute establishes decision-gates
at Milestone A (entry into technology maturation and risk reduction), Milestone B (entry into
system development and demonstration), and entry into full-rate production. For many software
programs this set of terms and approach does not make sense and is incompatible with the
ability to deliver capability to the field in a rapid fashion.

Critical cost growth in major defense acquisition programs (10 U.S.C. §2433a [Nunn-McCurdy]):
2433 establishes the conditions under which Congress reviews a major program that has
undergone critical cost growth and determines with it should continue. By the time a software
program hits a Nunn-McCurdy breach it has already gone well past the point where the program
should have been terminated and restarted using a different approach. All software procurement
programs should start small, be iterative, and build on success ‒ or be terminated quickly.

https://www.law.cornell.edu/uscode/text/10/2431a
https://www.law.cornell.edu/uscode/text/10/2433a

SWAP Study Final Release, 3 May 2019 S98

Independent cost estimation and cost analysis (10 U.S.C. §2334)

Working capital funds (10 U.S.C. §2208(r)):
● 2+ year lead times from plan to budget does not allow for continuous engineering
● Differentiating software development workload as Research, Development, Test and

Engineering (RDT&E), Procurement, or Operations and Maintenance (O&M) is
meaningless as there should be no final fielding or sustainment element to continuous
engineering.

● System-defined program elements hinder the ability to deliver holistic capabilities and
enable real-time resource, requirements, performance and schedule trades across
systems without significant work.

Operational Test and Evaluation (10 U.S.C. §139b/d, 10 U.S.C. §2399): 139 establishes the
position of the Director of Operational Test and Evaluation (DOT&E) and requires that person to
carry out field tests, under realistic combat conditions, of weapon systems for the purpose of
determining the effectiveness and suitability of those systems in combat by typical military
users. 2399(a) states that a major defense acquisition program “may not proceed beyond low-
rate initial production until initial operational test and evaluation of the program, subprogram, or
element is completed.” 2399(b)(4) further states that the program many not proceed “until the
Director [of Operational Test and Evaluation] has submitted to the Secretary of Defense the
report with respect to that program under paragraph (2) and the congressional defense
committees have received that report.” These are obstacles for DevSecOps implementation of
software, where changes should be deployed to the field quickly as part of the (continuous)
development process. They are an example of a “tailgate” process for OT&E that impedes our
ability to deploy software quickly and drives a set of processes in which OT&E impedes rather
than enhances the software development process. Instead of this process, Congress should
allow independent OT&E of software to occur in parallel with deployment and also require that
OT&E cycles for software match development cycles through the use of automated workflows
and test harnesses wherever possible.

Additional issues:

● Testing and evaluation (T&E) must be integrated into the development life cycle to
facilitate DevSecOps, and reduce operations and sustainment (O&S) costs. T&E should
be present from requirements setting to O&S

● Programs need persistent and realistic environments that permit continuous, agile
testing of all systems (embedded, networked, etc.) in a representative SoS environment

● Software environments should be part of the contract deliverables and accessible to
T&E, including source code, build tools, test scripts, data

Definition of a major acquisition program (10 U.S.C. §2430): The designation of a program as a
major acquisition program triggers a set of procedures that are designed for acquisition of
hardware. This includes triggering of the DoD Instruction 5000.02, which is currently tuned for
hardware systems. An alternative instruction, DoD Instruction 5000.75, is better tuned for
software, but can only used for defense business systems; it is not valid for “weapons systems.”

https://www.law.cornell.edu/uscode/text/10/2334
https://www.law.cornell.edu/uscode/text/10/2208
https://www.law.cornell.edu/uscode/text/10/139
https://www.law.cornell.edu/uscode/text/10/2399
https://www.law.cornell.edu/uscode/text/10/2430
https://aida.mitre.org/dodi-5000/
https://aida.mitre.org/dodi-5000-75/

SWAP Study Final Release, 3 May 2019 S99

Depot level maintenance and repair; core logistics (10 U.S.C. §2460, 10 U.S.C. §2464): The
definitions of maintenance, repair, and logistics are based on an acquisition model that is
appropriate for hardware but not well aligned with the operation of modern software. For
example, §2464 says that Services will “maintain and repair the weapon systems.” But software
is not maintained, it is optimized (with better performance and new functionality) on a
continuous basis. §2460(b)(1) further states that depot level maintenance and repair “does not
include the procurement of major modifications or upgrades of weapon systems that are
designed to improve program performance.”

Additional issues:

● DoD’s challenge in shifting from applying a Hardware (HW) maintenance mindset to
Software (SW) hinders DoD’s ability to better leverage DoD’s organic SW engineering
infrastructure to deliver greater capability to the warfighter.

● DoD’s acquisition process is not emphasizing an upfront focus on design for software
sustainment and a seamless transition to organic software engineering sustainment to
reduce the life-cycle cost of software and to speed delivery of capability over the life
cycle. Such upfront emphasis is critical given the scope, complexity, and mix of the
growing software sustainment demand, in the face of persistent affordability concerns.

● DoD’s organic software engineering capabilities and infrastructure are critical to national
security, but there is limited enterprise visibility of this infrastructure, its capabilities,
workload, and resources to leverage it at the enterprise level to deliver greater capability
more affordably to the warfighter.

Regulations
The regulations are the mechanism by which the DoD implements the statutes that govern its
operations. They provide additional examples of impediments to the implementation of modern
software development practices in DoD systems.

Cost estimating system requirements (48 CFR 252.215-7002) : These regulations set out the
expectations for estimation of costs of a program against a set of system requirements. While
perhaps appropriate for a hardware-oriented system, they do not take into account the type of
continuous development cycle that is required to implement modern software.

Additional requirements for major systems (48 CFR 207.106): These regulations set out
procedures for competition of contracts and are written in a manner that separates out the initial
deployment of a system with the operation and sustainment of that system. This doesn’t make
sense for software.

Processes (Instructions)
The detailed processes used to implement the regulations are laid out in Department of Defense
Instructions. We illustrate here some of the specific instructions that are obstacles to
implementation of modern software development practices.

https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2460
https://www.law.cornell.edu/uscode/text/10/2464
https://www.law.cornell.edu/cfr/text/48/252.215-7002
https://www.law.cornell.edu/cfr/text/48/207.106

SWAP Study Final Release, 3 May 2019 S100

Major acquisition program development process (DODI 5000.02, par 5.c.(2) and 5.c.(3)(c)-(d)):
These portions of the DoD Instructions apply to “Defense Unique Software Intensive” programs
and “Incrementally Deployed Software Intensive” programs. While well-intentioned, they are still
waterfall processes with years between the cycles of deployments (instead of weeks). These
processes may be appropriate for some embedded systems, but are not the right approach for
DoD-specific software running on commercial hardware and operating systems, as the
diagrams below illustrate:

Definitely not this: Better, but still not right: What we need:

Specify, design, deploy, sustain

DODI 5000.02, Figure 4. Model 2:

Defense Unique Software Intensive Program
DODI 5000.02, Figure 5. Model 3: Incrementally

Deployed Software Intensive Program

Implement, scale, optimize

https://commons.wikimedia.org/wiki

/File:Devops-toolchain.svg
(modifications licensed CC-BY-SA)

Waterfall development Waterfall development with
overlapping builds

Continuous integration and
deployment (DevSecOps)

Requirements for programs containing information technology (DoDI 5000.02, Enclosure 11): This
enclosure attempts to define the requirements for ensuring information security. It is written
under the assumption that the standard waterfall process is being used.

Preparation, Submission, and Execution of the Budget - Acceptance (OMB Cir A-11, II.10): This
document is the primary document that instructs agencies how to prepare and submit budget
requests for OMB review and approval. Section II.10 describes the conditions for acceptance of an
acquired item by the government, and requires that the asset meets the requirements of the
contract. The impact of this procedure is that it establishes a “100% compliance” mentality in order
for the government to accept a software “asset.”

Culture
In this final section we catalog a list of culture items that do not necessarily require changes in
statutes, regulations, or instructions, but rather a change in the way that DoD personnel
interpret implement their processes. Changing the culture of DoD is a complex process,
depending in large part on incentivizing the behaviors that will lead to the desired state.

Data and metrics

https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc20
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://creativecommons.org/licenses/by-sa/4.0/
https://www.dau.mil/guidebooks/Shared%20Documents%20HTML/DoDI%205000.02.aspx#toc268

SWAP Study Final Release, 3 May 2019 S101

● Multiple, competing, and sometimes conflicting types of data and metrics used, or not
used, for assessing software in DOD

● Inability to collect meaningful data about software development and performance in a
low cost manner, at scale

● Inability to turn data into meaningful analysis and inability to implement decisions or
changes to software activities (L/R/C)

Contracts

● Individual contracts are subject to review processes designed for large programs (of
which they are likely enabling). This limits the agility of individual contract actions, even
when modular contracting approaches are applied. In addition, the acquisition process is
rigid and revolves around templates, boards, and checklists thus limiting the ability for
innovation and streamlining execution.

● Contracts focus on technical requirements instead of contractual process requirements.
The contract should address overall scope, PoP, and price. The technical execution
requirements should be separate and managed by the product owner or other technical
lead.

● Intellectual Property (IP) rights are often generically incorporated without considering the
layers of technology often applied to a solution. A single solution might include open
source, proprietary SW, and government custom code. The IP clauses should reflect all
of the technology that is used.

Security Accreditation

● Although developing and operating software securely is a primary concern, the means to
achieve and demonstrate security is overly complex and hampered by inconsistent and
outdated/misapplied policy and implementation practices (e.g., overlaying historical DoD
Information Assurance Certification and Accreditation Process (DIACAP) over risk
management framework (RMF) controls for individual pieces of software versus system
accreditation). The sense is that the certification and accreditation process is primarily a
“check- the-box” documentary process, adds little value to the overall security of the
system, and is likely to overlook flaws in the design, implementation, and the
environment in which the software operates.

● The DoD needs to be able to calculate the true and component costs for implementing
the RMF and certification and accreditation (C&A) in order to identify inefficiencies,
duplicative capabilities, and redundant or overlapping security products and services that
are being acquired or developed. Absent a set of metrics it is difficult to prioritize risk
areas, investments, and evaluating risk reduction and return on investment.

● The DoD needs to ensure that each Joint Capability Area (JCA) flow-down its strategy,
best practices, and implementation requirements/guidance for security and accreditation
to allow the Component responsible for implementing the software to appropriately tailor
RMF and plan the development, accreditation, and operation of the software.

● The DoD needs to provide automated tools and services needed to integrate continuous
monitoring with the development life cycle, enable continuous assessment and
accreditation, and delegate decision making at the lowest level possible. The DoD
should embrace DevSecOps (not just DevOps) and provide policy supported processes,
certified libraries, tools, and a toolchain reference implementation to produce “born
secure” software

Testing and Evaluation

SWAP Study Final Release, 3 May 2019 S102

● The DoD lacks the realistic test environments needed to support test at the pace of
modern software methods.

● The DoD lacks the modern software intellectual property (IP) regime needed to support
test and evaluation at the pace of modern software methods

● The DoD lack the enterprise knowledge management/data analytics capability needed to
support evaluation of test data at the pace of modern software methods

Workforce

● No defined requirements for software developers
● Antiquated policies (talent management, software development)
● Culture and knowledge (DoD, societal, defense contractors)

Appropriations/Funding

● 2+ year lead times from plan to budget does not allow for continuous engineering
● Differentiating software development workload as Research, Development, Test and

Engineering (RDT&E), Procurement, or Operations and Maintenance (O&M) is
meaningless as there should be no final fielding or sustainment element to continuous
engineering.

● System defined program elements hinder the ability to deliver holistic capabilities and
enable real-time resource, requirements, performance and schedule trades across
systems without significant work.

Infrastructure

● Creating software: The DoD lacks availability of vetted, secure, reusable components,
either as source code, or other digital artifacts (think hardened Docker containers or
virtual machines (VMs) here). A repository of discoverable, well indexed, vetted, secure,
and reusable components could go a long way. This also emphasizes the point that an
awful lot of software now-a-days is software by construction with minimal “glue” code
applied.

● Building/managing/testing software: There is a general lack of available tools to build
software, especially automated tools (testing/scanning/fuzzing etc.) integrated into a
secure pipeline supporting rapid agile development. There is also a significant need to
have a common, government owned and managed code repository that all programs
could/should/must use (e.g., government-furnished GitHub).

● Running/hosting software: The DoD needs to continually push the level of abstraction up
as much as possible for programs. Traditionally programs, even cloud-based solutions,
tend to start at Infrastructure as a Service (IaaS) and build their own rest of the stack.
We need secure and available Platform as a Service (PaaS) and Function as a Service
(FaaS) so that programs only need to focus on core business logic and not on securing
a database or message bus over and over again.

● Operating/updating securely: Once developed and instantiated on a secure and
available platform, we need to continually monitor, red team (automated?), and evolve
the software. This requires proper instrumentation, logging, and monitoring of the
platform, supporting libraries/components, and the core program code. A
standard/common way to provide instrumentation and monitoring of the running services
built into the infrastructure would be very helpful.

Requirements

SWAP Study Final Release, 3 May 2019 S103

● A byproduct of top-level requirement flow down is rigidity and over specificity at the
derived requirements level that greatly hinders agile s/w design.

● Too often exquisite requirements are levied on a system that in turn drive extensive
complex software requirements and design, affecting development, integration, and
system test.

● Data sets are siloed within programs: a common “law of requirements” is that programs
of record try to avoid dependencies with other programs of record. This is problematic
for software-based capabilities because data is often siloed within single programs of
record. We have network programs to “pass” data, but the promise of artificial
intelligence (AI), including machine learning (ML), is that software algorithms can
leverage pools of data from disparate sources (data lakes).

● By tying software to a program of record, it becomes harder to transfer that code across
systems and data environments. As a result, DoD limits code reuse within and across
Services.

Modernization and sustainment

● DoD’s challenge in shifting from applying a hardware maintenance mindset to software
hinders DoD’s ability to better leverage DoD’s organic software engineering
infrastructure to deliver greater capability to the warfighter.

● DoD’s acquisition process is not emphasizing an upfront focus on design for software
sustainment and a seamless transition to organic software engineering sustainment to
reduce the life-cycle cost of software and to speed delivery of capability over the life
cycle. Such upfront emphasis is critical given the scope, complexity, and mix of the
growing software sustainment demand, in the face of persistent affordability concerns.

● DoD’s organic software engineering capabilities and infrastructure are critical to national
security, but there is limited enterprise visibility of this infrastructure, its capabilities,
workload, and resources to leverage it at the enterprise level to deliver greater capability
more affordably to the warfighter.

Acquisition Strategy

● Acquisition policy framework: Create a cohesive acquisition policy architecture within
which effective, efficient software acquisition policy has a home.

● Acquisition management and governance: Flip the concept of an oversight model on its
head.

SWAP Study Final Release, 3 May 2019 S104

DIB Guide: Detecting Agile BS

Agile is a buzzword of software development, and so all DoD software development projects
are, almost by default, now declared to be “agile.” The purpose of this document is to provide
guidance to DoD program executives and acquisition professionals on how to detect software
projects that are really using agile development versus those that are simply waterfall or spiral
development in agile clothing (“agile-scrum-fall”).

Principles, Values, and Tools

Experts and devotees profess certain key “values” to characterize the culture and approach of
agile development. In its work, the DIB has developed its own guiding maxims that roughly map
to these true agile values:

Agile value DIB maxim

Individuals and interactions over processes and
tools

“Competence trumps process”

Working software over comprehensive
documentation

“Minimize time from program launch to deployment
of simplest useful functionality”

Customer collaboration over contract negotiation “Adopt a DevSecOps culture for software systems”

Responding to change over following a plan “Software programs should start small, be iterative,
and build on success ‒ or be terminated quickly”

Key flags that a project is not really agile:

● Nobody on the software development team is talking with and observing the users of the
software in action; we mean the actual users of the actual code.14 (The PEO does not
count as an actual user, nor does the commanding officer, unless she uses the code.)

● Continuous feedback from users to the development team (bug reports, users
assessments) is not available. Talking once at the beginning of a program to verify
requirements doesn’t count!

● Meeting requirements is treated as more important than getting something useful into
the field as quickly as possible.

● Stakeholders (dev, test, ops, security, contracting, contractors, end-users, etc.)15 are
acting more-or-less autonomously (e.g., ‘it’s not my job.’)

● End users of the software are missing-in-action throughout development; at a minimum
they should be present during Release Planning and User Acceptance Testing.

14 Acceptable substitutes for talking to users: Observing users working, putting prototypes in
front of them for feedback, and other aspects of user research that involve less talking.
15 Dev is short for development, ops is short for operations

SWAP Study Final Release, 3 May 2019 S105

● DevSecOps culture is lacking if manual processes are tolerated when such processes
can and should be automated (e.g., automated testing, continuous integration,
continuous delivery).

Some current, common tools in use by teams using agile development (these will change as
better tools become available):16

● Git, ClearCase, or Subversion - version control system for tracking changes to source
code. Git is the de facto open source standard for modern software development.

● BitBucket or GitHub - Repository hosting sites. Also provide issues tracking, continuous
integration “apps” and other productivity tools. Widely used by the open source
community.

● Jenkins, Circle CI or Travis CI - continuous integration service used to build and test
BitBucket and GitHub software projects

● Chef, Ansible, or Puppet - software for writing system configuration “recipes” and
streamlining the task of configuring and maintaining a collection of servers

● Docker - computer program that performs operating-system-level virtualization, also known as

“containerization”
● Kubernetes or Docker Swarm for Container orchestration
● Jira or Pivotal Tracker - issues reporting, tracking, and management

Graphical version:

Questions to Ask Programming Teams

16 Tools listed/shown here are for illustration only: no endorsement implied.

SWAP Study Final Release, 3 May 2019 S106

● How do you test your code? (Wrong answers: “we have a testing organization,” “OT&E
is responsible for testing”)

○ Advanced version: what tool suite are you using for unit tests, regression testing,
functional tests, security scans, and deployment certification?

● How automated are your development, testing, security, and deployment pipelines?
○ Advanced version: what tool suite are you using for continuous integration (CI),

continuous deployment (CD), regression testing, program documentation; is your
infrastructure defined by code?

● Who are your users and how are you interacting with them?
○ Advanced version: what mechanisms are you using to get direct feedback from

your users? What tool suite are you using for issue reporting and tracking? How
do you allocate issues to programming teams? How to you inform users that their
issues are being addressed and/or have been resolved?

● What is your (current and future) cycle time for releases to your users?
○ Advanced version: what software platforms to you support? Are you using

containers? What configuration management tools do you use?

Questions for Program Management
● How many programmers are part of the organizations that owns the budget and

milestones for the program? (Wrong answers: “we don’t know,” “zero,” “it depends on
how you define a programmer”)

● What are your management metrics for development and operations; how are they used
to inform priorities, detect problems; how often are they accessed and used by
leadership?

● What have you learned in your past three sprint cycles and what did you do about it?
(Wrong answers: “what’s a sprint cycle?,” “we are waiting to get approval from
management”)

● Who are the users that you deliver value to each sprint cycle? Can we talk to them?
(Wrong answers: “we don’t directly deploy our code to users”)

Questions for Customers and Users
● How do you communicate with the developers? Did they observe your relevant teams

working and ask questions that indicated a deep understanding of your needs? When is
the last time they sat with you and talked about features you would like to see
implemented?

● How do you send in suggestions for new features or report issues or bugs in the code?
What type of feedback do you get to your requests/reports? Are you ever asked to try
prototypes of new software features and observed using them?

● What is the time it takes for a requested feature to show up in the application?

Questions for Program Leadership
● Are teams delivering working software to at least some subset of real users every

iteration (including the first) and gathering feedback? (alt: every two weeks)

SWAP Study Final Release, 3 May 2019 S107

● Is there a product charter that lays out the mission and strategic goals? Do all members
of the team understand both, and are they able to see how their work contributes to
both?

● Is feedback from users turned into concrete work items for sprint teams on timelines
shorter than one month?

● Are teams empowered to change the requirements based on user feedback?
● Are teams empowered to change their process based on what they learn?
● Is the full ecosystem of your project agile? (Agile programming teams followed by linear,

bureaucratic deployment is a failure.)

For a team working on agile, the answer to all of these questions should be “yes.”

Graphical version:

More information on some of the features of DoD software programs are included in the DIB’s
“Ten Commandments of Software,” the DIB’s “Metrics for Software Development,” and the DIB’s

“Do’s and Don’ts of Software.”

SWAP Study Final Release, 3 May 2019 S108

Is Your Development Environment Holding You Back?
A DIB Guide for the Acquisition Community

A strong software development team is marked by some common attributes, including the use
of practices, processes, and various tools.

An effective team starts with clear goals. The entire software team should have a clear
sense of the project’s goals and the value they seek to provide “the client.” The goals should be
translated into specific objectives, which may be measured in terms of agreed-upon key
performance indicators (KPIs) or other frameworks. An effective development environment is
one designed to deliver value toward those goals. (This KPI-driven paradigm should not be
seen as an invitation to reprise an extended debate about requirements.)

Technical practices and processes that enable a development environment to deliver
value toward those goals include:

● Organization of activities through discrete “user stories” that can be broken down into
smaller components and continually prioritized by the product owner

● Relatively short “sprints” (often two weeks), each ending in a retrospective, that enable
measurement and learning throughout the process

● Blameless postmortems that allow for maximum learning and speedy recovery from
failures

● Automated testing, security, and deployment
● Testing (including user testing) and security should be shifted to the left and be part of

the day-to-day operations within the development teams
● Continuous integration, in which developers integrate code into a shared repository

several times a day, and check-ins are then verified by an automated build for early
problem detection

● Continuous delivery or continuous deployment, in which the software is seamlessly
deployed into staging and production environments

● Trunk-based development, in which team members work in small batches and develop
off of trunk or master, rather than long-lived feature branches

● Version control for all production artifacts including open source and third party libraries
● Infrastructure as code: version control for all configuration, networking requirements,

container orchestration files, continuous integration/continuous delivery (CI/CD) pipeline
files

● Ability to execute A/B testing and canary deployments
● Ability to get rapid and continuous user feedback and to test new features with users

throughout the development process

Effective teams will practice continuous delivery, in which teams deploy software in short cycles,
ensuring that the software can be reliably released at any time. Continuous deployment can be
measured by a team’s ability to achieve the following outcomes:

● Teams can deploy on-demand to production or to end users throughout the software
delivery life cycle.

SWAP Study Final Release, 3 May 2019 S109

● Fast feedback on the quality and deployability of the system is available to everyone on
the team, and people make acting on this feedback their highest priority.

Specific measures that will help you gauge if your development environment is working as it
should include development frequency; lead time for changes; time to restore service after
outage; and change failure rate (rollback deployed code). These questions and data, borrowed
from the 2017 State of DevOps Report from DORA, can help assess where your teams stand:

 High
performance

Medium
performance

Low
performance

Deployment frequency
How often does your organization
deploy code?

On demand
(multiple deploys
per day)

Between once
per week and
once per month

Between once
per week and
once per month

Lead time for changes
What is your lead time for changes
(i.e., how long does it take to go from
code-commit to code successfully
running in production)?

Less than one
hour

Between one
week and one
month

Between one
week and one
month*

Mean time to recover (MTTR)
How long does it generally take to
restore service when a service
incident occurs (e.g., unplanned
outage, service impairment)?

Less than one
hour

Less than one
day

Between one
week and one
day

Change failure rate
What percentage of changes results
either in degraded service or
subsequently requires remediation
(e.g., leads to service impairment,
service outage, requires a hotfix,
rollback, fix forward, patch)?

0-15%

0-15% 31-45%

* Low performers were lower on average (at a statistically significant level), but had the same median as the medium
performers (2017 DevOps Report)

There is no exact set of tools that indicate that your development environment is working as it
should, but the use of some tools will often indicate that the practices and processes above are
in place. You commonly see effective software teams using:

● An issue tracker, like Jira or Pivotal Tracker
● Continuous integration and/or continuous integration/continuous delivery (CI/CD) tools,

like Jenkins, Circle CI, or Travis CI
● Automated build tools, like Maven, Grable, Cmake, and Apache Ant
● Automated testing tools, like Selenium, Cucumber, J-Unit

https://puppet.com/resources/whitepaper/state-of-devops-report

SWAP Study Final Release, 3 May 2019 S110

● A centralized artifacts repository, like Nexus, Artifactory, or Maven
● Automated security tools for static and dynamic code analysis and container security,

like Sonarqube, OWASP ZAP, Fortify, Nessus, Twistlock, Aqua, and more.
● Automation tools, like Chef, Ansible, or Puppet
● Automated code review tools, like Code Climate
● Automated monitoring tools, like Nagios, Splunk, New Relic, and ELK
● Container and container orchestration tools like Docker, Docker Swarm, Kubernetes,

and more

Warning signs that you may have screwed up your development environment include:
● If teams cannot effectively track progress toward defined goals and objectives roughly

every two weeks
● If teams cannot rapidly deploy various environments that mirror production to test their

code such as in development, QA, and staging
● If teams cannot have real-time feedback regarding their code building, passing tests,

and passing security scans
● If it takes months for end users to be able to see changes and provide feedback
● If teams cannot rapidly roll-back to previous versions or perform rolling-update to new

versions without downtime
● If recovering from incidents results in significant drama or the assignment of blame
● If having code ready to deploy is a big event (it should happen routinely and without

drama)
● If changes to the software frequently result in breaking it

SWAP Study Final Release, 3 May 2019 S111

If developers are not empowered to change the code or build new functionality based on user
feedback, or to change their process based on what they learn.

SWAP Study Final Release, 3 May 2019 S112

Is Your Compute Environment Holding You Back?
A DIB Guide for the Acquisition Community

To enable software to provide a competitive advantage to the warfighter, DoD must adopt a
strategy for rapidly transitioning DoD IT to current industry standards. This modernization
agenda should include providing distributed databases and abundant computing power; making
bandwidth available as a platform; integrating mobile technologies; and developing DoD
platforms for downloading applications. This document outlines compute and infrastructure
capabilities that should be available to DoD programmers (and contractors) who are developing
software for national defense. The capabilities include:

1. Scalable compute. Access to computing resources should never be a limiting factor
when developing code. Modern cloud environments provide mechanisms to provide any
developer with a powerful computing environment that can easily scale with the needs of
an individual programmer, a product development team, or an entire enterprise.

2. Containerization. Container technology provides sandbox environments in which to test
new software without exposing the larger system to the new code. It “packages up” an
application with all of the operating system services required for executing the
application and allowing that application to run in a virtualized environment. Containers
allow isolation of components (that communicate with each other through well-defined
channels) and provide a way to “freeze” a software configuration of an application
without freezing the underlying physical hardware and operating system.

3. Continuous integration/continuous delivery (CI/CD) pipeline (DevSecOps
platform). A platform that provides the CI/CD pipeline is used for automated testing,
security, and deployment. This includes license access for security tools and a
centralized artifacts repository with tools, databases, and a base operating system (OS)
with an existing authorization to operate (ATO).

4. Infrastructure as code: automated configuration, updating, distribution, and
recovery management. Manual configuration management of operating systems and
middleware platforms leads to inconsistencies in fielded systems and drives up the
operating costs due to the labor hours required for systems administration. Modern
software processes avoid this by implementing “infrastructure as code,” which replaces
manual processes for provisioning infrastructure with automated processes that use
machine-readable definition files to manage and provision containers, virtual machines,
networking, and other components. Adopting infrastructure as code and software
distribution tools in a standardized way streamlines uniformity of deployment and testing
of changes, which are both vital to realizing the benefits of agile development processes.

5. Federated identity management and authentication backend with common log file
management and analysis. Common identity management across military,
government, and contractors greatly simplifies the assignment of permissions for
accessing information across multiple systems and allows rapid and accurate auditing of

SWAP Study Final Release, 3 May 2019 S113

code. The ability to audit access to information across multiple systems enables the
detection of inappropriate access to information, and can be used to develop the
patterns of life that are essential for proper threat analysis. Common identity
management can ease the integration of multi-factor authentication across servers,
desktops, and mobile devices. Along with public key infrastructure (PKI) integration, it
allows verification of both the service being accessed by the user and the user
accessing information from the service.

6. Firewall configuration and network access control lists. Having a common set of OS
and application configurations allows network access control not just through network
equipment, but at the server itself. Pruning unnecessary services and forcing information
transfer only through intentional interfaces reduce the attack surface and make servers
more resilient against penetration. Server-to-server communication can be encrypted to
protect from network interception and authenticated so that software services can only
communicate with authorized software elements.

7. Client software. Remote login through remote desktop access is common throughout
DoD. This greatly increases the difficulty of integrating mobile platforms and of permitting
embedded devices to access vital information, especially from the field. It also
complicates uniform identity management and multi-factor verification, which is key to
securing information. By moving to web client access mobile integration - and
development - is greatly eased. It also becomes possible to leverage industry innovation,
as this is where the commercial sector is heading for all interactions.

8. Common information assurance (IA) profiles. Information assurance (IA) for DoD
systems is complex, difficult, and not yet well-architected. Test, certification, and IA are
almost always linear “tailgate” processes instead of being integrated into a continuous
delivery cycle. Common IA profiles integrated into the development environment and
part of the development system architecture are less likely to have bugs than
customized and add-on solutions.

Desired State with Examples
Effective use of software requires sufficient resources for computing, storage, and
communications. Software development teams must be provided with abundant compute,
storage, and bandwidth to enable rapid creation, scaling, and optimization of software products.

Modern cloud computing services provide such environments and are widely available for
government use. In its visits to DoD programs, the DIB Software Acquisition and Practices
(SWAP) team has observed many programs that are regenerating computing infrastructure on
their own—often in a highly non-optimal way—and typically due to constraints (or perceived
constraints) created by government statutes, regulations, and culture. This approach results in
situations where compute capability does not scale with needs; operating systems cannot be
upgraded without upgrading applications; applications cannot be upgraded without updating the
operating systems; and any change requires a complete information assurance recertification.

SWAP Study Final Release, 3 May 2019 S114

Compute platforms are thus “frozen” at a point established early in the program life cycle, and
development teams are unable to take advantage of new tools and new approaches as they
become available. The DIB SWAP team has noted a general lack of good tools for profiling code,
maintaining access and change logs, and providing uniform identity management, even though
the DoD has system-wide credentials through Common Access Control (CAC) cards.

It would be highly beneficial to create common frameworks and/or a common set of

platforms that provide developers with a streamlined or pre-approved Authority to

Operate (ATO). Use of these pre-approved platforms should not be mandated, but they create
cost and time incentives by enabling more consolidated platforms. DoD could make use of
emerging government cloud computing platforms or achieve similar consolidation within a DoD-
owned data center (hybrid cloud). DoD should move swiftly from a legacy data center approach
to a cloud-based model, while taking into account the lessons learned and tools and services
available from commercial industry, with assumed hardware and operating system updates
every 3-5 years.

Warning signs

Some indicators that you may have screwed up your compute environment include:
● Your programmers are using tools that are less effective than what they used in school
● The headcount needed to support the system grows linearly with the number of servers

or instances
● You need system managers deployed with hardware at field locations because it is

impossible to configure new instances without high skill local support
● You have older than current versions of operating systems or vendor software because it

is too hard to test or validate changes
● Unit costs for compute, network transport and storage are not declining, or are not

measurable to be determined
● Logging in via remote desktop is the normal way to access an information service
● You depend on network firewalls to secure your compute resource from unauthorized

access
● You depend on hardware encryptors to keep your data safe from interception
● You have to purge data on a regular basis to avoid running out of storage
● Compute tasks are taking the same or longer time to run than they did when the system

was first fielded
● Equipment or software is in use that has been “end of lifed” by the vendor and no longer

has mainstream support
● It takes significant work to find out who accessed a given set of files or resources over a

reasonable period of time
● No one knows what part of the system is consuming the most resources or what code

should be refactored for optimization
● Multifactor authentication is not being used
● You cannot execute a disaster recovery exercise where a current backup up of a system

cannot be brought online on different hardware in less than a day

SWAP Study Final Release, 3 May 2019 S115

Getting It Right
These capabilities should be available to all DoD programmers and contractors developing
software for national defense:

Scalable compute
● Modern compute architectures
● Environments that make transitions across cloud and local services easy
● Graphics Processing Unit (GPU)- and ML-optimized compute nodes available for

specialized tasks
● Standardized storage elements and ability to expand volumes and distribute them based

on performance needs
● Standardized network switching options with centralized image control
● Property management tagging—no equipment can be placed in a data center without

being tagged for inventory and tracked for End of Life support from vendors
● Supply chain tracking for all compute elements

Containerization

● Software deployment against standard profile OS image
● Containers can be moved from physical to cloud-based infrastructure and vice versa
● Applications and services run in containers and expand or contract as needed
● OS updates separated from application container updates
● Centralized OS patch validation and testing
● Containers can be scaled massively horizontally
● Containers are stateless and can be restarted without impact
● Configuration management for deployment and audit

Continuous integration/continuous delivery (CI/CD) pipeline (DevSecOps platform)

● Select, certify, and package best of breed development tools and services
● Can be leveraged across DoD Services as a turnkey solution
● Develop standard suite of configurable and interoperable cybersecurity capabilities
● Provide onboarding and support for adoption of Agile and DevSecOps
● Develop best-practices, training, and support for pathfinding and related activities
● Build capability to deliver a Software Platform to the Defense Enterprise Cloud

Environment
● Self-service portal to selectively configure and deliver software toolkit with pre-

configured cybersecurity capabilities

Infrastructure as code: automated configuration, updating, distribution and recovery
management

● Ability to test changes against dev environments
● Standardized profiling tools for performance measurement
● Centralized push of patches and updates with ability for rapid rollback
● Auditing and revision control framework to ensure proper code is deployed and running
● Ability to inject faults and test for failover in standardized ways

SWAP Study Final Release, 3 May 2019 S116

● Disaster recovery testing and failover evaluation
● Utilization tracking and performance management utilities to predict resource crunches
● Standardized OS patch and distribution repositories
● Validation tools to detect manual changes to OS or application containers with alerting

and reporting

Federated identity management and authentication backend with common log file
management and analysis

● Common identity management across all DoD and contractors
● Common multifactor backends for authentication of all users along with integration of

LDAP/Radius/DNS or active directory services
● Integrated PKI services and tools for automated certificate installation and updating
● Common DRM modules that span domains between DoD/contractors and vendor

facilities that can protect, audit and control documents, files, and key information. All
encrypted at rest, even for plain text files.

● Useful for debugging and postmortem analysis
● Develop patterns of life to flag unusual activity by users or processes
● Automated escalation to defensive cyber teams

Firewall configuration and network access control lists

● Default configuration for containers is no access
● Profiles for minimal amounts of ports and services being open/run
● All network communications are encrypted and authenticated, even on the same

server/container

Client software

● Web-based access the norm, from desktops/laptops as well as mobile devices
● Remote login used as a last resort - not as the default
● Security technical implementation guides (STIGs) for browsers and plugins, as well as

common identity management at the browser interface (browsers authenticate to servers
as well as servers authenticating to browsers)

● Minimal state kept on local hardware - purged at end of session

Common information assurance (IA) profiles

● Enforces data encrypted in flight and at rest
● Software versions across DoD with automated testing
● Application lockdowns at the system level so only authorized applications can run on

configured systems
● “Makefile” to build configurations from scratch from base images in standardized

approved configurations
● Use of audit tools to detect spillage and aid in remediation (assisted via DRM

SWAP Study Final Release, 3 May 2019 S117

SWAP Program Visits: Questions and Observations

Programs Reviewed
Reviewed 6 programs to date:

● Next Generation fighter jet
● Next Generation ground system
● Kessel Run—AOC Pathfinder
● Space tracking system
● Naval radar system
● Cross-service business system

What we hope to understand:

● Why is the software the way it is?
● How have you gone about developing and deploying it?
● What constraints/obligations have you been under and what would be your

recommendations to change those?

Standard Questions
● What is the coding environment and what languages/SW tools do you use?
● What do the software and system architectures look like?
● What is the computational environment (processing, comms, storage)?
● How is software deployed and how often are updates delivered to the field?
● What determines the cycle time for updates?
● How does software development incorporate user feedback? What is the developer-user

interface? How quickly are user issues addressed and fixed?
● How long does it take to compile the code from scratch?
● How much access does the DoD have to the source code?
● How is testing done? What tool suites are used? How much is automated? How long

does it take to do a full regression test?
● How is cybersecurity testing done? How are programs/updates certified?
● What does the workforce look like (headcounts, skill sets)? How many programmers?

How much software expertise is there in the program office?
● What is the structure of the contract with the government? How are changes, new

features, and new ideas integrated into the development process?

Preliminary Observations
● Software is being delivered to the field 2-10X slower than it could be due to outdated

requirements, test requirements, and lack of trust in SW
● Many systems are using legacy hardware and outdated architectures that make it much

harder to exploit advances in computing and communications

SWAP Study Final Release, 3 May 2019 S118

● Program requirements were often formulated 5+ years ago (when the threat environment
+ available technologies were very different => wasted effort)

● New capabilities and features are added in multi-year (multi-decade?) development
“blocks” instead of continuously and iteratively

● Most program offices don’t have enough expertise in modern SW methods
● Most SW teams are attempting to implement DevOps and “agile” approaches, but in

most cases the capabilities are still nascent (and hence fragile)
● Transition to DevOps is often hindered by a gov’t support structure focused on technical

performance in a waterfall setting (“waterfall with sprints”)
● Information assurance (IA) is complex, difficult, and not yet well architected
● Test, certification and IA are almost always linear “tailgate” processes instead of being

integrated into a continuous delivery cycle.

What should be done differently in future programs?
● Spend time upfront getting the architecture right: modular, automated, secure
● Make use of platforms (hardware and software) that continuously evolve at the

timescales of the commercial sector (3-5 years between HW/OS updates)
● Start small, be iterative, and build on success ‒ or terminate quickly
● Construct budget to support the full, iterative life cycle of the software
● Adopt a DevOps culture: design, implement, test, deploy, evaluate, repeat
● Automate testing of software to enable critical updates to be deployed in days to weeks,

not months or years (also requires changes in testing organization)
● Have a local team of DoD software experts who are capable of modifying or extending

the software through source code or API access
● Separate development of mission level software from development of IA-accredited

platforms

SWAP Study Final Release, 3 May 2019 S119

How to Justify Your Budget When Doing DevSecOps

As we transition software development from big spiral programs into DevSecOps, program
managers will have to wrestle with using new practices of budget estimation and justification,
while potentially being held to old standards that should no longer apply. In addition to all of the
regular challenges of retaining a budget allocation (budget reviews, audits, potential reductions
and realignment actions, all many times a year), defending a budget for a DevSecOps acquisition
requires additional explanation and justification because those charged with oversight—whether
inside the Department or in Congress—have come to expect specific information on a tempo that
doesn’t make sense for DevSecOps projects. Program managers leading DevSecOps projects
therefore must not only do the hard work of leading agile teams toward successful outcomes, but
also create the conditions that allow those teams to succeed by convincing cost assessors and
performance evaluators to evaluate the work differently. Fortunately, commercial industry already
has best practices for budget estimation and justification for DevSecOps and that DoD should
follow industry approaches rather than create new ones

This DIB Guide is intended to help with this challenge. It seeks to provide guidelines and
approaches to help program managers of DevSecOps projects17 interact with those cost
assessors and performance evaluators through the many layers of review and approval
authorities while carrying out their vital oversight role. This guide should help with projects where
the development processes is optimized for software rather than hardware and where most key
stakeholders are aligned around the goal of providing needed capability to the warfighter without
undue delay.

Questions that we attempt to answer in this concept paper:
1. What does a well-managed software program look like and how much should it cost?
2. What are the types of metrics that should be provided for assessing the cost of a proposed

software program and the performance of an ongoing software program?
3. How can a program defend its budget if the requirements aren’t fixed or are changing?
4. How do we estimate costs for “sustainment” when we are adding new features?
5. Why is ESLOC (effective source lines of code) a bad metric to use for cost assessment

(besides the obvious answer that it is not very accurate)?

What does a well-managed DevSecOps program look like and how much should it cost?

The primary focus for DevSecOps programs is about regular and repeatable, sustainable delivery
of innovative results on a time-box pattern, not on specifications and requirements without
bounding time (Figure 1). The fixed-requirements spiral-development spending model has
created program budgets that approach infinity. DevSecOps projects, on the other hand will be
focused on different activities at different stages of maturity. In a DevSecOps project,
management should be tracking services and measuring the results of working software as the
product evolves, rather than inspecting end items when the effort is done, as would be expected

17 Not all software is the same; we focus here only on software programs using or transitioning to
DevSecOps.

SWAP Study Final Release, 3 May 2019 S120

in a legacy model. Software is never done and not all software is the same, but generally the work
should look like a steady and sustainable continuum of useful capability delivery.

Figure 1. Value Driven Iron Triangle (Carnegie Mellon University, Software Engineering Institute).

● During the creation phase, program managers will most likely decide to adopt Agile based
on criteria that fits their design challenge (e.g., software dependent). They would also be
motivated to build their products on top of widely used software platforms that are
appropriate for the technical domain at hand (e.g., embedded vs. web applications).
During this phase team also establishes base capability and what they consider a
minimum viable product (MVP).18 This is where all programs start and many should end.
Starting small and incrementing is not only the right way to do software, but it is also a
great way to limit financial exposure. A key tenet of agile development is learning early
and being ready to shift focus to increase the likelihood for success.

● During the scaling phase, the entire team (industry and government) commit and learn
how to transition to appropriate agile activities that are optimizing for implementing
DevSecOps for the project. This should focus the team on transitioning to a larger user
base with improved mechanisms for automated testing (including penetration testing), red
team attacks, and continuous user feedback. A key management practice in agile
development is to keep software projects to a manageable size. If the project requires
more scope, divide the effort into modular, easily connected chunks that can be managed
using agile methods and weave the pieces together in implementation.

● Once into implementation, a well-managed program should have a regular release
cadence (e.g., for IT projects every 2-3 weeks, while safety-critical products could run a
bit longer, 3-4 weeks). Each of these releases delivers small increments of software that
are as intuitive to use as possible and directly deployable to actual users. DevSecOps
programs move from small successes into larger impacts.

With allowances made for different sizes of project, DevSecOps should share certain
characteristics, including:

● An observer should easily find an engaged program office, as well as development teams
that are small (5-11 people), and well connected to one another through structured
meetings and events (a.k.a. “ceremonies”).

18 The MVP should not be overspecified since the main goal is getting the MVP into the hands of users for

feedback.

SWAP Study Final Release, 3 May 2019 S121

● A set of agile teams work on cross-functional capabilities of the system and include a
planning team and a system architecture team.

● The teams should have frequent interaction with subject matter experts and users from
the field or empowered product owners. Active user engagement is a vital element of an
Agile approach, but getting actual users (not just user representatives) to participate also
needs to be a managed cost that the program needs to plan for.

● The project should have a development environment that supports transparency of the
activities of the development teams to the customer. Maximal automation of reporting is
the norm for commercial development and should be for DoD programs as well.

● The program should include engaged test and certification communities who are deeply
involved in the early stages (i.e., who have “shifted left”) and throughout the development
process. Not just checkers at the end of that process. They would help design and validate
the use of automation and computer-assisted testing/validation tools whenever possible
as well.

● Capability should also be delivered in small pieces on a continuing basis—as frequently
as every two weeks for many types of software (see the DIB’s Guide to Agile BS).

The cost of a program always depends on the scale of the solution being pursued, but in an agile
DevSecOps project, the cost should track to units of 5–11-person cross-functional team (team
leader, developers, testers, product owners, etc.) with approximately 6–11 teams making up a
project. If the problem is bigger than that, the overall project could be divided up into related
groups of teams. A reliance on direct interaction between people is another central element of
Agile and DevSecOps; the communication overhead means that this approach loses
effectiveness with too many people in a team (typically 5–11 cross-functional members). Also,
groups of teams have difficulty scaling interactions when the number of teams gets too large (less
than twelve). A team-of-teams approach will allow scaling to fit the overall scope. Organizing the
teams is also a valuable strategy where higher level development strategies and system
architectures get worked out and the lower level teams are organized around cross-domain
capabilities to be delivered. Cost incentives for utilizing enterprise software platform assets should
be so attractive, and the quality of that environment so valuable, that no program manager would
reasonably decide to have his/her contractor build their own.

Here are some general guidelines for project costs when pursuing a DevSecOps approach:

● Create: deliver initial useful capability to the field within 3-6 months (the use of
commodity hardware and rapid delivery to deployment). If this cannot be achieved, it
should be made clear that the project is at risk of not delivering and is subject to being
canceled. Outcomes and indicators need to be examined for systematic issues and
opportunities to correct problems. Initial investment should be limited in two ways: 1) in
size to limit financial exposure and 2) in time to no more than 1 year.

● Scale: deliver increased functionality across an expanding user base at decreasing unit
cost with increased speed. Investment should be based on the rate limiting factors of
time and talent, not cost. Given a delivery cycle and the available talent, the program
should project only spending to the staffing level within a cycle.

SWAP Study Final Release, 3 May 2019 S122

● Good agile management is not about money, it is about regular and repeated deliver.
That is to say, it is about time boxing everything. Releases, staffing, budget, etc. Nick,
strongly recommend that you rework this to reflect time boxing as the most important
aspect of “defending your agile budget.

● Optimize: deliver increased functionality fixed or decreasing unit cost (for a roughly
constant user base). Investment limit should be less than 3 project team sets19.

What are the types of metrics that should be provided for assessing the cost of a proposed
software program and the performance of an ongoing software program?

Assessing the cost of a proposed software program has always been difficult, but can be
accomplished by starting one or more set of project teams at a modest budget (1-6 sets of teams)
and then adjusting the scaling of additional teams (and therefore the budget) based on the value
those teams provide to the end user. It may be necessary to identify the size of the initial team
required to deliver the desired functions at a reasonable pace and then price the program as the
number of teams scales up. The DIB recommends that program managers start small, iterate
quickly, and terminate early. The supervisors of program managers (e.g., PEOs) should also
reward aggressive early action to shift away from efforts that are not panning out into new
initiatives that are likely to deliver higher value. Justifying a small budget and getting something
delivered quickly is the best way to provide value (and the easiest way to get and stay funded).

The primary metric for an ongoing program should be user satisfaction and operational impact.
This can be different for every program and heavily depends on the context. The challenge, and
therefore the responsibility of the PM then is to define mission relevant metrics to determine
achieved and delivered value. Examples could include, personnel hours saved, number of objects
tracked or targeted, accuracy of the targeting solution, time to first viable targeting solution,
number of sorties generated per time increment, number of ISR sensors integrated, etc. Other
key metrics that are often advocated by agile programs (inside and outside of DoD) include:

● deployment frequency (Is the program getting increments of functionality out into
operations?),

● lead time (how quickly can the program get code into operation?),
● mean time to recover (how quickly can the program roll back to a working version, if

problems are found in operation?), and
● change fail rate (rate of failures in delivered code).

These four break down into two process metrics (release cadence and time from code-commit to
release candidate, and two are quality metrics (change fail rate and time to roll back). In addition,
each project should also have 3-5 key value metrics that are topical to the solution space being
addressed. Metrics must be available both to the teams and the customer so they can see how
their progress compares to the projected completion rate for delivering useful functionality. A key
reason for Government access to those metrics is for supporting the real-time tracking of progress
and prediction of new activities in the future. The biggest difference between a DevSecOps

19 Average of 8 people per team with an average of 8 teams per project.

SWAP Study Final Release, 3 May 2019 S123

program and the classic spiral approach is that the cadence of information transparency between
the developers and the customer is, at slowest, weekly, but if properly automated, should be
instantly and continuously available.. Quality metrics and discovery timelines (such as defects
identified early in development versus bugs identified in the field) can also be used to evaluate
the maturity of a program. This kind of oversight enables fast and effective feedback before the
teams end up in extremis, or set up unrealistic expectations.

Software projects should be thought of as a fixed cadence of useful capability delivery where the
“backlog” of activities are managed to fit the “velocity” of development teams as they respond to
evolving user needs. Data collected on developers inside of the software development
infrastructure can be provided continuously, instead of packaged into deliverables that cannot be
directly analyzed for concerns and risks.

The DIB’s “Metrics for Software Development” provide a set of metrics for monitoring
performance:

1. Time from program launch to deployment of simplest useful functionality.
2. Time to field high priority functions (spec → ops) or fix newly found security holes
3. Time from code committed to code in use
4. Time required for regression tests (automated) and cybersecurity audit/penetration tests
5. Time required to restore service after outage
6. Automated test coverage of specs/code
7. Number of bugs caught in testing vs field use
8. Change failure rate (rollback deployed code)
9. Percentage of code available to DOD for inspection/rebuild
10. Complexity metrics
11. Development plan/environment metrics

These data provide management flexibility since data about implementation of capability can be
made during development—instead of at a major milestone review or after “final” delivery, when
changing direction comes at a much higher cost and schedule impact. So data collection and
delivery must be continuous as well. Another note, these metrics are recommendations and not
intended to be prescriptive. Use what fits your program. Not all of these may be required.

An additional pair of overarching key metrics are headcount and expert talent available. If the
project headcount is growing, but delays are increasing,, aggressive management attention is
called for. The lack of expert talent also increases risks of failure.

How can a program defend its budget if the requirements are not fixed years in advance,
or are constantly changing?
It is relatively easy to defend changing capability by making changes to the software of
existing systems, as compared to starting up a new acquisition. Software must evolve with
the evolving needs of the customers. This is often the most cost effective and rapid way to
respond to new requirements and a changing threat landscape. A new approach to funding
the natural activities of continuous engineering and DevSecOps requires a system that can
prioritize new features and manage these activities as dependent and tightly aligned in time

SWAP Study Final Release, 3 May 2019 S124

(see Figure 1). A continuous deployment approach is needed for delivering on the evolving
needs culled from user involvement combining R&D, O&M, Procurement, and Sustainment
actions within weeks of each other, not years (see Figure 2). Great software development is
an iterative process between developers and users that see the results of the interaction in
new capability that is rapidly put in their hands for operational use.

Figure 2. Continuous Delivery of Modular Changes to Working Software (Carnegie Mellon
University, Software Engineering Institute).

Elements to address include in budget justification and management materials:

● DevSecOps programs have to be at least as valuable and urgent to fund as a classic DoD
spiral program in the hyper-competitive budget environment. Over time, DoD will realize
that the DevSecOps approach is inherently more valuable. However, time is of the
essence. It must be acknowledged that the current waterfall approach is no longer serving
us well in the area of software. The mainstream software industry has already made the
move to agile ten years ago and the methods are rigorously practices and proven valuable.

● The classic approach of doing cost estimates of designs based on fixed requirements has
always been wrong, even when accounting for intended capability growth because the
smart adversaries get a continuous vote on the threat environment. Accurate prediction of
a rapidly changing technology environment and solution methods only exacerbate the
unknowns of product development outcomes.

● DevSecOps programs have requirements, but start out at a higher level and use a
disciplined approach to continuously change and deliver greater value.

● DIB’s “Ten Commandments of Software” calls for the use of shared infrastructure and
continuous delivery, which will reduce the cost of infrastructure and overhead, thus freeing
up capital to advance unique military capability.

● Data available above the program manager’s level has been insufficient for cost and
program evaluation communities to assess software projects. However, the reporting of
metrics that are a natural consequence of using DevSecOps approaches should be
automated to provide transparency and rapid feedback.

The benefits of this approach are manifold. It allows for thoughtful rigor up front and early and the
rapid abandonment of marginal or failure-prone approaches early in the design cycle before large

SWAP Study Final Release, 3 May 2019 S125

investments are sunk. Details are allowed to evolve. More stable chunks of capability are defined
at the “epic” level and a stable cadence of engineering and design pervades the life cycle. Under
this operational concept, testing is performed early, during the architecture definition stage and
continuously as new small deployments of functionality are delivered to the user. The identification
of budget is redistributed as value is provided and validated for warfighting impact. A closer
alignment of flexible requirements and budget allocation/ appropriation will be necessary in order
to ensure that the national defense needs and financial constraints are continuously managed.

Continuous access to design and delivery metrics will illuminate developer effectiveness, user
delight, and the pace of delivery for working code to include analytical data for in-stride oversight
and user/programmatic involvement This will replace the standard practice of document-based
deliverables and time-late data packages that take months to develop and are not current when
provided.

The way that DoD has classically managed these activities is to break them up into different
“colors of money” associated with hardware-centric phases (see Figure 3). This places an artificial
burden on excellence in software. Rapid and continuous delivery of working code requires
addressing these different types of requirements within shorter time-horizons than is natural for
the existing federal budgeting process.

Figure 3. Notional DoD Weapon System Cost Profile (Defense Acquisition University).

In addition, the classic approach of developing detailed technical requirements far in advance of
performing product design needs to be replaced. The new paradigm must begin with an
architecture that will support the requirements and scale associated with needs for future
compatibility (e.g., modularity security, or interoperability). Also, using an agile approach, a
program can incorporate the best available technologies and methods throughout the entire life

SWAP Study Final Release, 3 May 2019 S126

cycle and avoid a development cycle is longer than the useful life of the technology it is built on.
Getting these things wrong is not recoverable. Establishing detailed requirements over a period
of years before beginning, to be followed by long development efforts punctuated by major design
reviews (i.e., Software Requirements Review, Preliminary Design Review, Critical Design Review,
Test Readiness Review, Production Readiness Review) that require a span of years between
events are inherently problematic for software projects for at least two reasons. First, these review
events are designed around hardware development spirals that are time-late and provide little in
the way of in-stride knowledge of software coding activities that can be used to aid in real-time
decision making. Second, development teams are in frequent contact with users and adjusting
requirements as they go, which up-ends the value of major design reviews that are out of cadence
with the development teams. DevSecOps implementation methods such as feature
demonstrations and cycle planning events provide much more frequent and valuable information
on which program offices can engage to make sure the best value is being created.

Defending a budget has to be done in terms of providing value. Different programs value different
things—increasing performance, reducing cost, minimizing the number of humans-in-the- loop—

so there is no one size fits all measure. But in an agile environment, knowing what to measure to
show value is possible because of the tight connection to the user/warfighter. Those users are
able to see the value they need because they are able to evaluate and have an impact on the
working software. This highlights the need to collect and share the measures that show
improvement against a baseline in smaller increments.

How do we do cost for “sustainment” when we are adding new features?

The first step is to eliminate the concept of sustaining a fixed base of performance. Software can
no longer be thought of as a fixed hardware product like a radar, a bomb, or a tank. That leads to
orphaned deployments that need unique sustainment and a growth of spending that does not
deliver new functionality (see Figure 4).

Figure 4. Layers of Sustainment to Manage Unique Deployments

Software can continue to evolve and be redeployed for comparatively little cost (see Figure 2).
Users continue to need and demand greater performance and improved features, if for no other
reason than to retain parity with warfighting threats. Also internal vulnerabilities and environmental
updates must be continuously deployed to support ever improving cyber protections. The most
secure software is the one that is most recently updated. Lastly, new capabilities for improved
warfighting advantage are most often affordably delivered through changes to fielded products.

SWAP Study Final Release, 3 May 2019 S127

Software development is a very different way of delivering military capability. It should be
considered more like a service of evolving performance. When new features are needed, they get
put in the backlog, prioritized, and scheduled for a release cycle (see Figure 5). If the program is
closer to providing satisfactory overall performance, then the program can dial down to the
minimum level needed to satisfy the users and keep the environment and applications cyber-
secure. It can be thought of as recursive decisions on how many (software) “squadrons” are
required for our current mission set and then fund those teams at the needed staffing level to
create, scale, or optimize the software (depending on the stage of continuous development).
Because these patterns can be scaled up and down by need in a well-orchestrated way, new
contracting models are available that might not have been used in the past. For example, fixed
price contracts for a development program was strongly discouraged, but under this model, where
schedule and team sizes are managed and capability is grown according to a rigorous plan
(Figure 1), a wider array of business, contracting and remuneration models can be explored.

Figure 5. Release Cycle With New Opportunities, Discoveries and Response to Threats (Carnegie
Mellon University, Software Engineering Institute).

Two financial protections built into acquisition laws and regulations need to be reexamined in the
light of software being continuously engineered, vice sustained: Nunn-McCurdy and the Anti-
Deficiency Act. The continuous engineering pipeline will continue to push out improved capability
until the code base is retired. While Nunn-McCurdy is a valid constraint for large hardware
acquisitions, it does not apply to software efforts. In a similar vein, software should also never
trigger the Anti-Deficiency Act - just like keeping a ship full of fuel, or paying for air-traffic
controllers; we know we are going to be doing these things for a long time. To build a ship that
will need fuel for 40 years does not invoke the ADA. Therefore, starting a software project that
will incrementally deliver new functionality for the foreseeable future should not do so either.

Why is ESLOC a bad metric to use for cost assessment?

The thing we really want to estimate and then measure is the effort required to develop, integrate,
and test the warfighting capability that is delivered by software. SLOC might have been a used
as a surrogate for estimating the effort required, but it has never been accurate. Not all software
is the same, not all developers are the same, and not all development challenges use the same
approaches to reduce problems into solutions. For example, in a project there may things like

https://www.acq.osd.mil/fo/docs/Kendall%20Use%20of%20Fixed-Price%20Incentive%20Firm%20(FPIF).pdf

SWAP Study Final Release, 3 May 2019 S128

detailed algorithms that require deep expertise and detailed study to properly implement small
amounts of code, running alongside large volumes of automatically generated code of relatively
trivial complexity. Many different levels of effort are needed to create a line of code that will deliver
military capability, and estimations of source code volume is an inherently problematic and error-
filled approach to describing the capability thus produced. That’s why DevSecOps efforts use
measures of relative effort like story points to communicate across a particular set of teams how
much effort it will take to turn a requirement into working software that meets an agreed upon
definition of done within a set cadence of activity. Because these story points are particular to a
specific team, they do not accurately transition to generally prescribable measures of cost.

Estimating by projecting the lines of code starts the effort from the end and works backwards.
SLOC is an output metric (something to know when the job is done—akin to predicting what size
clothing your child will wear as an adult). It does not capture the human scale of effort. Traditional
models like COCOMO or SEER attempt to use a variety of parameters in their models to capture
things like formality, volatility, team capabilities, maturity and others. However, these surrogates
for effort have well documented error sources and have failed time and again to accurately capture
the cost of executing a software program. There are also inherent assumptions built into these
models that are obviated by performing agile development of capability models running on a
software platform.

In the beginning stages of DoD’s transformation to DevSecOps methods, the development and
operations community will need to work closely with the cost community to derive new ways of
predicting how fast capability can be achieved. For example, estimating how many teams worth
of effort will be needed to invest in a given period of time to get the functionality needed. As they
do this, it needs to be with the understanding that the methods are constantly changing and the
estimation methods will have to evolve too. New parameters are needed, and more will be
discovered and evolve over time.

https://resources.sei.cmu.edu/asset_files/Brochure/2017_015_001_506361.pdf

SWAP Study Final Release, 3 May 2019 S129

Appendix F: SWAP Working Group Reports

The information in this appendix was developed based on feedback and analysis performed by
members of a working group that included subject matter experts (SMEs) within the Department
who provided input for consideration to the SWAP study. The working group was asked to: (1)
distill the feedback received from case studies, interviews, literature reviews, and feedback from
the Board members into main issue points; (2) as SMEs identify the statutory, regulatory, and
cultural obstacles to achieving the Board’s vision for a desired end state; and (3) provide
suggested language to remove the barriers.

The following reports were generated by 10 subgroups:
● Acquisition Strategy
● Appropriations
● Contracting
● Data and Metrics
● Infrastructure
● Requirements
● Security Accreditation/Certification
● Sustainment and Maintenance
● Test and Evaluation
● Workforce

These reports describe input to the SWAP study and the specific views and ideas for change in
the reports do not necessarily reflect the final views of the SWAP study. These reports have been
lightly edited by the study for consistency with the terminology of this report and are included to
provide context and insight into our final themes, lines of effort, and recommendations.

SWAP Study Final Release, 3 May 2019 S130

Appendix F.1: Acquisition Strategy Subgroup Report

Contributing authors: Melissa Naroski Merker (lead), Jeff Boleng, Nicolas Chaillan, Ben
FitzGerald, Jonathan Mostowski, Don Johnson, COL Harry Culclasure (809 Panel), Gabe
Nelson (809 Panel), Larry Asch (809 Panel), Nick Tsiopanas (809 Panel), Nick Kosmidis.

Additional advice / assistance from MITRE, IDA, and DAU

This appendix examines pain points, obstacles, change ideas, and future vision for the Defense
Innovation Board (DIB) Software Acquisition and Practices (SWAP) Study in the area of
Acquisition Strategy and Oversight (i.e., Acquisition Environment). In 2017 the Office of the
DASD(C3CB) under the ASD(A) commissioned an IT acquisition study with Deloitte. The study
recommended the following attributes of an effective and efficient IT acquisition structure:

● Fast to incorporate current technology and make efficient use of Agency resources

● Flexible and adaptable to support rapid changes in technology and input from
stakeholders about capability needs

● Collaborative to seek stakeholder involvement and input to be incorporated throughout

In a previous study completed in September 2016, Deloitte also provided key findings on
commercial IT practices. Findings were taken into consideration when forming the proposals
following in this appendix. The team recognizes that DoD is falling short of the preferred attributes
outlined above with the current IT acquisition structure, in addition to multiple statutory, regulatory,
and cultural issues that currently hinder an effective and efficient DoD acquisition environment
that would benefit from reform.

Pain Points

Acquisition Policy Environment. DoD lacks a cohesive acquisition policy architecture and robust
policy for software acquisition. Existing policies, to include tangential or supplemental policies that
are integral to the operation of the defense acquisition system, do not fit well together and result
in discrepancies, conflicts, and gaps. The defense acquisition system is monolithic, compiled in
pieces as needs arose instead of as an integrated and evolving environment. It has proven unable
to keep up with or remain ahead of the pace of change and technological advancements that
require speed and agility. While it has regularly been revised, the changes tend to be conservative
and incremental, requiring the agreement of too many parties protecting narrow interests and who
are reluctant to relinquish authority or evolve. The system remains focused on oversight and
situational control rather than insight and trust. The policies, practices, and documents become
quickly entrenched and manifest themselves in the form of the Department’s culture, leading to
additional bureaucracy and decreased levels of organizational trust, that are difficult to rapidly
reverse. Furthermore, the environment is risk averse, seeking out what is perceived to be the
“safest” route to get things done, stifling the innovation and risk- taking that’s required to maintain
an advantage over adversaries.

As an example, one DoD weapons system program, which is implementing a DevSecOps pipeline
to enable agile capability releases, informed us it took 18 months to get approval of a Test and

SWAP Study Final Release, 3 May 2019 S131

Evaluation Master Plan (TEMP). The process within the TEMP drove them into sequential
developmental and operational test—which is antithetical to continuous delivery under the
DevSecOps concept.

Governance and Management. The Department lacks a strategic approach that recognizes
software’s criticality as the backbone and nervous system of the Department’s mission and
operations, often leading to widespread duplication of capabilities that could be consolidated and
scaled at an enterprise level (whether Service-enterprise or OSD-enterprise). This absence of
any strategy, compounded by a long-standing lack of organizational trust in the Department, is
exemplified by various situations in the software environment. For example, the lack of reciprocity
on matters such as security standards, architecture, and compliance methods—my way is “better”
(insert “less expensive,” “more efficient,” “more effective”) than your way, or, “our
requirements/processes are unique,” regardless of validity. Further, DoD issues separate policies
on matters such as cloud, architecture, and risk management, with no unified approach at the
strategic level. Management and governance of these matters takes the form of prolific numbers
of senior working groups (or equivalent) that make few decisions but have frequent meetings.
DoD’s lack of an overarching strategic plan for key technologies, with a robust decision making
framework that pushes responsibility and authority down to the lowest executable level, creates
inefficiency, duplication, and waste.

Organization and Culture. DoD lacks an organizational structure with clear responsibility and
authority for software acquisition and management; there are confusing roles and responsibilities
between DoD CIO, USD(A&S), and the DoD CMO. This state of ambiguity leads to overlap,
inefficiency, and unnecessary bureaucracy; and it is replicated at the Service level. The result is
a slow, rigid, siloed organization unable to adapt in the present and plan for the future in order to
maintain competitive advantage. DoD is not a change-ready environment and the acquisition
system was not designed for rapid change. DoD employees tend to receive change mandates
rather than participating in them. A case in point is that when DoD issues a policy, the Services
will implement their own supporting version or “supplemental guidance,” which expands the policy
and introduces multiple layers of bureaucracy, eliminating any semblance of flexibility that was
intended by the original policy issued. For example, the Department issued DoD Instruction
5000.75 in February 2018, a tailored requirements and acquisition approach for business
systems. Subsequently, the Army produced accompanying implementation guidance—91
pages—which introduces additional forms, templates, processes, and time constraints.

Desired (end) state An acquisition system that enables rapid delivery of cost-efficient, relevant
software capability through the application of creative compliance and fact-based critical thinking
under a logical and minimal policy framework. The Department treats software as a national
security capability and continuously retrains the workforce to be able to adapt to an ever-changing
technology environment, embraces continuous collaboration between user and developers,
embraces changing requirements, accepts and take risks, and deliver adversary- countering
capabilities to the warfighter. Executing the approach requires an end state with an efficient
contracting environment; a culture that rewards informed risk-taking and fast failures; the use of
limits or guardrails instead of prescriptive requirements that limit creativity; outcome-based
metrics that focus on value vs. execution against a plan; and a move away from traditional funding

SWAP Study Final Release, 3 May 2019 S132

models and compliance-driven management.

Obstacles The Department operates with a general lack of urgency regarding its software—it is
not recognized or treated as a national security capability. There is an aversion to informed risk-
taking regarding new and innovative approaches to doing business and adopting emerging (or
even simply relevant) technologies, even though it’s risky, or riskier, to continue using outdated
technologies that are not secure or facing obsolescence in the face of evolving threats. Dramatic
changes in policy or process are viewed as risky yet our current ways of operation are not despite
a known degradation in strategic advantage previously enjoyed over adversaries. The inability to
evolve and support rapid changes in technology and input from stakeholders about capability
needs is bred through organizational silos and stovepipes that stifle the collaboration necessary
to develop and operationalize software. Further, stakeholder involvement is limited by following
restrictive controls, timelines, and processes in a sequential manner that impedes progress and
results in a lower state of readiness. The duplication of authorities and responsibilities among
organizations both horizontally and vertically, within the defense acquisition system only
exacerbates an already complex environment where a protectionist culture is ingrained and the
workforce is not incentivized to change. In its endeavors to improve the status quo, “help” from
Congress over the past decades translates into entrenched policies, processes, and
procedures—”cultural norms” that are difficult to reverse.

Ideas for Change

Acquisition Policy Environment. Define software as a critical national security capability under
Section 805 of FY16 NDAA “Use of Alternative Acquisition Paths to Acquire Critical National
Security Capabilities.” Create an acquisition policy framework that recognizes that software is
ubiquitous and will be part of all acquisition policy models. Recommend the creation of a clear,
efficient acquisition path for acquiring non-embedded software capability. Reconcile and resolve
discrepancies among supplemental policies that lead to conflicts. Consider the following tenets in
development of a reformed software acquisition policy:

● Emphasis on quickly delivering working software

● Encourage projects and pilot efforts that serve to reduce risk and complexity - fail fast

● Reimagine program structures and program offices—i.e., accommodate move to “as-a-
service” capabilities, agile, microservices, and micro-applications

● Iterative, incremental development practices based on agile methods

● Rapid adoption of emerging technologies through piloting or prototyping

● Elimination of traditional A, B, C milestones; replaced by more sprint-centric decision
points

● Elimination of arbitrary phases or merge phases to reflect rapid, agile development
methods

● Tailor in requirements (statutory, regulatory—i.e., documentation) rather than tailor out;

SWAP Study Final Release, 3 May 2019 S133

start with a minimum set

● No big-bang testing with sequential DT/OT; move to fully integrated test approaches
driven by automated testing as well as regular, automated cybersecurity scanning

● Use a “guardrail-based” (upper/lower limit) approach for software requirements rather
than defining every requirement up front

● Track value-driven outcome metrics which can be easily and continuously generated
rather than measuring execution against a plan

Governance and Management - Software as an Asset. Develop an enterprise-level Strategic
Technology Plan that reinforces the concept of software as a national security capability. Include
an approach for enterprise-level DevSecOps and other centralized infrastructure development
and management, an approach for shared services, and applications management. The plan
should recognize how disruptive technologies will be introduced into the environment on an
ongoing basis. Ensure appropriate integration of a data strategy and the Department’s Cloud
Strategy. Examine a Steering Committee approach for management.

Organization and Culture Reform. Examine roles and responsibilities with the intent to streamline
reconcile, and resolve discrepancies for software acquisition and management among the DoD
CIO, the USD(A&S) and the CMO. Re-focus the software acquisition workforce on teaming and
collaboration, agility, improved role definition, career path advancement methods, continuing
education and training opportunities, incentivization, and empowerment. Involve them in the
change process.

SWAP Study Final Release, 3 May 2019 S134

Appendix F.2: Appropriations Subgroup Report

Contributing author: Jane Rathbun (lead)

The Department’s current Planning, Programming, Budgeting and Execution (PPBE) system
framework and process using defined Program Elements (PEs), is categorized by life-cycle–

phased appropriations, and requires two years or more in lead time from plan to start of execution.
This approach was designed and structured for traditional waterfall acquisition used to deliver
monolithic platforms such as aircraft, ships, and vehicles. The PPBE framework and process is
challenging when leveraging agile and iterative acquisition methodologies to deliver software-
intensive, information-enabling capabilities through a continuous delivery process. The current
process limits the ability to quickly adapt systems against rapidly changing threats and increases
the barriers for integrating advancements in digital technology in a timely and effective manner.

Pain Points and Obstacles

Appropriation methods intended for hardware systems and platforms are not consistent with the

speed and technology pace of modern software and how it is successfully acquired and deployed.

DoD continues to acquire and fund information-centric systems using processes designed for
hardware-centric platforms. Current funding decision processes and data structures do not
effectively support leading software development practices. As a result, DoD is not effective in
leveraging and adapting at the pace of innovation seen in industry. Differentiating continuous
iteration and continuous delivery of software workload into hardware-defined phases (Research,
Development, Test & Evaluation (RDT&E), Procurement, or Operations and Maintenance (O&M))
is meaningless in a world view where software is never done - not because planned work isn’t
accomplished but because modern methods allow a project to continuously improve, adapt to
evolving threats, and take advantage of rapid technology advances. There should be no final
fielding or sustainment element in continuous engineering. System defined program elements
hinder the ability to deliver holistic capabilities and services and do not enable real-time resource,
requirements, performance, and schedule trades across systems without significant work.

Establishing a culture of experimentation, adaptation and risk-taking is difficult. The Department
requires a process that supports early adoption of the most modern information-centric
technologies and enables continuous process and capability improvement. The Deputy Secretary
of Defense directed aggressive steps “…to ensure we are employing emerging technologies to
meet warfighter needs; and to increase speed and agility in technology development and
procurement.” The current cycle of planning, budgeting, and executing across appropriation
categories slows acquisition, development, and execution to a pace that is not sustainable for
mission success.

Desired state. The desired state for the Department would be one in which continuous capability
deployment throughout a software program’s life cycle is possible, and the lengthy two-plus year
lead times for programming and budgeting is removed. This would provide flexibility to execute
desired features with the speed and agility necessary to meet the rapid changes in threats,
information technologies, processes, and services. The single appropriation across the life cycle
of a capability will enable continuous development, security, and operations (DevSecOps); allow

SWAP Study Final Release, 3 May 2019 S135

for minimum viable product delivery at a relevant speed; support the use of managed (or cross
PoR/enterprise) services; provide for greater transparency for information-centric capabilities; and
provide the flexibility to pursue the most effective solution available at the time of acquisition
without current restrictions of appropriations.

Ideas for change. A new multi-year appropriation for Digital Technology needs to be established

for each Military Defense Department and the Fourth Estate. This appropriation fund would
provide a single two-year appropriation for the life-cycle management of software-intensive and
infrastructure-technology capabilities. This could be a stand-alone appropriation, or fall under the
umbrella of an already established appropriation, with the appropriate caveats that allow it to
behave as the single source of funding across the life cycle. The Department would seek to couple
this new appropriation with the movement to a capability or service portfolio management
construct. A project framework within each capability PE (i.e., logistics or intelligence) would
represent the systems and key investments supporting the delivery of information-centric
capabilities such as data conditioning and process reengineering. Capability portfolio
management would better enable agile/iterative force development and management decisions
to include realignment of resources from one system to another system or process reengineering
effort within the portfolio to increase the velocity of minimum viable product output and overall
capability delivery. PPBE decision making would be adjusted to allow for less detail in the
programming process and greater specificity in the budgeting process—as close to execution as
possible—to realize the benefits of agile/iterative development.

● The Components should program, budget, and execute for information and technology
capabilities from one appropriation throughout the life cycle rather than using RDT&E,
procurement, or O&M appropriations, which are often applied inconsistently and
inaccurately. This will allow for continuous engineering.

● Within each Component-unique Budget Activity (BA), Budget Line Items (BLINs) align by
functional or operational portfolios. The BLINs may be further broken into specific projects
to provide an even greater level of fidelity. These projects would represent key systems
and supporting activities, such as mission engineering.

● By taking a portfolio approach for obtaining software intensive capabilities, the
Components can better manage the range of requirements, balance priorities, and
develop portfolio approaches to enable the transition of data to information in their own
portfolios and data integration across portfolios to achieve mission effects, optimize the
value of cloud technology, and leverage and transition to the concept of acquisition of
whole data services vice individual systems.

● This fund will be apportioned to each of the Military Departments and OSD for Fourth
Estate execution.

● Governance: management execution, performance assessment, and reporting would be
aligned to the portfolio framework—BA, BLI, project.

SWAP Study Final Release, 3 May 2019 S136

Appendix F.3: Contracting Subgroup Report

Contributing author: Jonathan Mostowski (lead)

The contacting challenges faced by DoD today are almost entirely cultural. This premise is
asserted by instances of excellence throughout the Department where effective contracting
methods have been executed (DDS, DIU, Kessel Run).

That said, rather than attempting to battle each cultural challenge as they arise, it is easier to
create a new modern acquisition platform from which to execute contracts that starts from a point
of “how should it be done” as a product of “what should we be buying.”

The historical acquisition system was created to prevent fraud. The new priority is to establish
technical superiority over our adversaries. While the prevention of fraud continues to be, and
always will be, important, as a singular priority it serves to undermine the current identified need
of speed and efficiency, which results in technical excellence for the Department.

Pain Points

Individual contracts are subject to review processes designed for large programs (of which they

are likely enabling). This limits the agility of individual contract actions, even when modular
contracting approaches are applied. In addition, the acquisition process is rigid and revolves
around templates, boards, and checklists thus limiting the ability for innovation and streamlining
execution.

Contracts focus on technical requirements instead of contractual process requirements. The
contract should address overall scope (required capability), Period of Performance and price. The
technical execution requirements should be separate and managed by the product owner or other
technical lead.

Intellectual Property (IP) rights are often genetically incorporated without considering the layers

of technology often applied to a solution. A single solution might include open source, proprietary
software, and government custom code. The IP clauses should reflect all of the technology used.

Desired State

The desired state is an acquisition model that is liberated from the decades of policy and
regulations that singularly focus on fraud prevention and provides for efficiency allowing DoD to
keep pace with the private sector and adversaries. This can be accomplished through a new
authority Congress establishes a separate new authority for contracting for software development
and IT modernization.

Obstacles
● Requires act of Congress ⇒ work with Armed Service Committees Staffers
● There is no infrastructure to support this ⇒ establish policy for guidance
● There are no Contracting Officers with specific certifications ⇒ Leverage current

certifications

SWAP Study Final Release, 3 May 2019 S137

● Could cause confusion on implementation (what applies, what doesn’t) ⇒ A&S issues
guidance

Ideas for Change

Congress establishes a separate new authority for contracting for software development and IT
modernization

To address “Individual contracts being subject to review processes designed for large programs”:

● Treat procurements as investments “what would you pay for a possible initial capability”
(cultural).

● Manage programs at budget levels, allow programs to allocate funds at a project
investment level (policy).

● Work with appropriators to establish working capital funds so that there is not pressure
to spend funds quicker then you’re ready (iterative contracts may produce more value
with less money) (statute).

● Leverage incentives to make smaller purchases to take advantage of simplified
acquisition procedures (cultural).

● Revise estimation models - source lines of code are irrelevant to future development
efforts, estimations should be based on the team size, capability delivered, and
investment focused (cultural).

● Allow for documentation and reporting substitutions to improve agility (agile reporting vs
EVM) (cultural and EVM policy).

● Provide training to contracting officers, program managers, and leadership to
understand the value and methods associated with agile and modular implementation
(cultural).

 To address “Contracts focus on technical requirements instead of contractual process

requirements”:

● Separate contract requirements (scope, PoP, and price) from technical requirements
(backlog, roadmap, and stories) (cultural).

● Use statement of objectives (SOO) vs statement of work (SOW) to allow the vendor to
solve the objectives how they are best suited (cultural).

● Use collaborative tools and libraries so that all content is available to all parties at all
times (cultural).

● Use an agile process to manage structure and technical requirements (cultural).

SWAP Study Final Release, 3 May 2019 S138

● Establish a clear definition of done for the end of a sprint (code coverage, defect rate,
user acceptance) (cultural).

● Use modular contracting to allow for regular investment decisions based on realized
value (cultural).

● Streamline acquisition processes to allow for replacing poor performing contractors
(cultural).

● Provide training to contracting officers, program managers, and leadership to understand
the value and methods associated with agile and modular implementation (cultural).

To address “Intellectual Property (IP) rights which are often genetically incorporated without

considering the layers of technology often applied to a solution”:

● Establish clear and intuitive guidelines on how and when to apply existing clauses
(cultural).

● Educate program managers and contracting officers on open source, proprietary, and
government funded code (cultural).

● Have standard clause applications for each of the above that must be excepted vs
accepted (cultural).

SWAP Study Final Release, 3 May 2019 S139

Appendix F.4: Data and Metrics Subgroup Report

Contributing authors: Ben FitzGerald (lead) and Matthias Maier

The Department of Defense (DoD) has long standing methods for capturing data, developing
metrics, and reporting program progress, however these practices do more to obfuscate than
provide insight when it comes to software and stand in the way of more effective methods. DoD’s
approach to data and metrics is fundamentally intertwined with its governance and compliance
culture, which centers around reporting on individual programs to inform specific decisions by
senior leaders and the Congress. Attempts to change DoD’s data and metrics methods must
therefore also address this culture and, critically, link with other reform efforts including policy,
tools for the software development environment, and overall approaches to governance and
investment.

Note: in the context of this appendix, data refers to` information associated with the development,
maintenance, enhancement, and performance of software systems, not the substantive data that
they process or generate.

Pain Points

Multiple, competing, and sometimes conflicting types of acquisition/management data and

metrics are used for divergent purposes in the assessment of software in DoD. DoD has long
standing practices to collect data on programs: primarily cost, schedule, and performance. These
data are imperfect and do not necessarily reflect the health of software in any way but are
important, particularly for satisfying existing reporting requirements. These data must be improved
and linked with data and metrics focused on assessing the health of software activities. Doing so
will potentially cause bureaucratic confusion and competition.

Challenges collecting meaningful data, in a low cost manner, at scale. To the extent that DoD
currently collects data on its software activities, it does so through the manual entry of reporting
data in separate and disparate reporting/management systems. This approach is prone to errors
and incredibly time-consuming and burdensome to program offices. DoD components
responsible for developing and maintaining the systems reporting information have few incentives
to share such data, as they are often used against them, meaning that the data are hard to
capture, include mistakes, and no constituency wants to invest in systems to automate data
collection.

Inability to turn data into meaningful analysis and inability to implement decisions or changes to

software activities. Even if DoD had clarity on its use of data and the ability to collect those data
passively and at scale, it may not be able to meaningfully change the outcomes of its software
activities and could become caught in a Cassandra predicament. The culture of decision making,
acquisition policy, contracting, formality of requirements, appropriations rules and oversight mean
that data driven insights do not naturally translate into improved decision making on DoD software
activities.

SWAP Study Final Release, 3 May 2019 S140

Desired State

An operational system and culture that makes policy, investment, and program decisions based
on insight and analysis developed in a transparent manner from standardized data collected
automatically from software development tools.

Obstacles

The Department, in most but not all instances, does not possess the tools or analysts to achieve
the desired state. Those are addressable challenges. The bigger obstacle is the culture of high
level reporting, driven from Congress and OSD, on individual programs on a period basis, for
example congressionally mandated annual Selected Acquisition Reports (SARs), and in turn,
Defense Acquisition Executive Summary (DAES) reports that inform OSD quarterly of the same
information. This approach means that data are not strategically collected at the level that allows
for real insight and longitudinal analysis, instead they are developed at a summary level to
minimally meet requirements and avoid further scrutiny. Most importantly, they do not provide the
real-time tools to enable a software program manager to manage her program.

While there are few legislative barriers to implementing the desired state, Congressional action
may be required to create the right incentives for DoD to generate, capture, and use data in useful
ways. Congress should also address its own oversight culture, which can sometimes drive much
of the behavior the Congress dislikes.

Ideas for Change

● Congress could establish, via an NDAA provision, new data-driven methods for
governance of software development, maintenance, and performance.20 The new
approach should require on demand access to standard data with reviews occurring on a
standard calendar, rather than the current approach of manually developed, periodic
reports.

● DoD must establish the data sources, methods, and metrics required for better analysis,
insight, and subsequent management of software development activities. This action does
not require Congressional action but will likely stall without external intervention and may
require explicit and specific Congressional requirements to strategically collect, access,
and share data for analysis and decision making.

● Key steps for implementation:

● Identification of existing definitive data sources (e.g., DAVE, FPDS21);

● Establishment of robust data crosswalks to analyze data across systems and use
cases;

20 Congress could build on Secs 911-913 of FY2018 NDAA
21 Defense Acquisition Visibility Environment (DAVE) https://dave.acq.osd.mil/; Federal Procurement Data
System (FPDS) https://www.fpds.gov/

https://dave.acq.osd.mil/
https://www.fpds.gov/

SWAP Study Final Release, 3 May 2019 S141

● Identification and mitigation of any significant gaps in existing data, with priority
placed on building out functionality from existing applications where possible;

● Establishment of mechanisms to ensure data sharing and transparency (i.e.,
require all components to share their data);

● Disambiguation of roles and responsibilities, e.g., OSD = policy/governance ≠

program review. Components = execution;

● Linking data and metrics to governance and policy analysis and decision making.

SWAP Study Final Release, 3 May 2019 S142

Appendix F.5: Infrastructure Working Group Report

Contributing author: Jeff Boleng (lead)

Despite several years of effort to “move DoD to the cloud,” significant friction still exists for DoD
to easily leverage the required compute, storage, and bandwidth infrastructure that the
commercial world so readily enjoys. The major obstacle is not at all technical, but is broadly one
of accessibility: the ability to specify, contract for, pay for, connect to, secure, and continuously
monitor sufficient modern computing infrastructure. Modern computing infrastructure refers
primarily to cloud-based computing technologies and stacks. “Cloud-based” does not necessarily
presuppose commercial cloud, but could also be on premises or hybrid cloud solutions. Similarly,
“computing technologies and stacks” can run the full spectrum from infrastructure, to platform, to
function, to software as a Service (IaaS, PaaS, FaaS, SaaS).

Pain Points and Obstacles

How much cloud do I need? Countless developers and IT professionals have wrestled with this
question, and often the answer is to “dive in,” move some apps, see what is needed, and then
scale and tweak from there. The Department’s culture hampers our ability to even take a “leap of
faith” like this. We must be able to precisely size and cost our cloud requirements before ever
starting to experiment or prototype. It should become more clear why this analysis paralysis exists
as the below pain points are outlined and considered.

How do I buy cloud? Oh, just head on over to FedRAMP, pick an approved provider, sign up and
you’re on your way… FedRAMP? Is that a cloud? What about GovCloud, cloud.gov (not the same
thing by the way), and MilCloud (is that version 1.0 or 2.0?)? What’s the difference between AWS
GovCloud and Azure Government? Can I just sign up with a credit card like a normal private
citizen and start hosting my compute and data in the cloud? Sadly, the answer is a definitive and
resounding NO! Even if you know which “government-approved” cloud you’re moving to, it’s just
not easy to contract for it or buy it.

There is not space here to answer all these rhetorical questions. For a good description of the
difficulty of buying cloud, please refer to the DoD Cloud Acquisition Guidebook at
https://www.dau.mil/tools/t/DoD-Cloud-Acquisition-Guidebook. Here the Defense Acquisition
University (DAU) outlines the multiple activities that need to be accomplished to contract for cloud
services. Starting with the dreaded IT Business Case Analysis (BCA), moving on to applying the
DoD Cloud Security Requirements Guide (SRG - more on this soon), to getting an Authorization
to Operate (ATO), ensuring DISA approves of your Boundary Cloud Access Point (BCAP) and
your Cyber Security Service Provider (CCSSP), and lastly to applying the DFARS supplementary
rule to your cloud contact. No friction here right?

How do I know my cloud is secure? Easy. FedRAMP pre-evaluates and approves Cloud Service
Providers (CSSPs) for Information Impact Levels (IILs) 2, 4, 5, and 6 (don’t ask about levels 1
and 3; apparently we over specified and they aren’t necessary any longer). Whew, now things are
making sense… Not so fast, the FedRAMP IILs are for US Government cloud use, but not DoD!22

22 Don’t ask… we know DoD is part of the US Government.

https://www.dau.mil/tools/t/DoD-Cloud-Acquisition-Guidebook

SWAP Study Final Release, 3 May 2019 S143

We need FedRAMP+ for DoD use, and DISA doesn’t evaluate Cloud Service Providers (CSPs),
only Cloud Service Offerings (CSOs). Huh? Be sure to go through the DoD Cloud Computing
SRG, ensure those extra security controls are in place for FedRAMP+, and you’re on your way.
Again, not so fast Program Manager (or small business owner)! How are you and your customers
going to access the fancy new cloud you just finally got on contract?

How do I access my cloud? The cloud, sort of by definition, implies ease of access, right? The
National Institute of Standards and Technology (NIST) definition in SP 800-145 defines cloud
computing as “a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction.” Well, if you’re a DoD user, you need to ensure you’ve got a BCAP
in place between your application/service and your users. It’s OK and accurate to immediately
envision bottleneck and single point of failure here.23 Mis-configuring and under-provisioning
BCAPs is the norm rather than the exception, so even with all that compute and storage in the
cloud that you somehow ran the contracting gauntlet to get, you’re going to severely lack adequate
bandwidth and likely suffer from significant latency. Friction++.

How do I pay for cloud? The best part of cloud computing is that I can only pay for what I use. A
true consumption-based cost model. Just like a utility. Not so for Government and DoD though.
The Anti-Deficiency Act doesn’t allow us to pay for cloud computing like a utility. A common way
around this is to pay a third party contractor to buy the cloud service for us. This results in a
situation where we estimate the highest charges we could ever incur in a year, add a bit of padding
to that (say 20-30%), pay the third party, and we’ve paid for our cloud. What happens if we don’t
use it all up by the end of the year? Nothing (i.e., no refunds). Money spent. The third party
contractor makes (quite?) a bit of extra profit for “taking the risk off the government.” So much for
consumption-based payments.

Desired State

The ability to provision, pay for, consume, access, and monitor cloud computing (compute,
storage, and bandwidth) the same way any commercial organization does. It is understood that
there are unique DoD security requirements, but that should only affect cloud pricing (say 1.5 to
2 times commercial, worst case), and not any of the other procedures to easily access cloud
computing technologies and resources.

Obstacles

Significant obstacles remain to easily leverage commercially equivalent compute, storage, and
bandwidth infrastructure. Contracting, security procedures (not necessarily requirements),
network access (i.e., a modern technological approach to BCAP), and billing all loom large. The
most important of these is the DoD’s inability to contract and pay for cloud computing on a
consumption basis.

23 There are better ways to do this, like zero trust networks. The commercial world has some really good
examples and architectures that don’t require this man-in-the-middle attack called a BCAP which actually
breaks end-to-end encryption by design…

SWAP Study Final Release, 3 May 2019 S144

Ideas for Change

Establish a DoD enterprise ability to procure, provision, pay for, and use cloud that is no different
from the commercial entry points for cloud computing. The Joint Enterprise Defense Infrastructure
(JEDI) Cloud initiative is a bold attempt at this solution and should be awarded. Cloud.gov (which
is ironically hosted in GovCloud) is another promising program that is already very straightforward
to provision and buy, but is limited to IIL 2 data and applications. The objective cloud procurement
and billing contract must include the ability to truly pay for consumption of cloud services and not
be artificially limited by the Anti-Deficiency Act. Modern software demands the ability to consume
and pay for cloud services just as we do any other utility.

In addition to this, DoD should establish a common, enterprise ability to develop software
solutions in the “easy-to-acquire-and-provision” cloud that is fully accredited by design of the
process, tools, and pipeline. Said another way, DoD should stop the security accreditation of
individual applications, but should instead invest in accrediting the ability to produce software.
The pipeline, automated tooling, procedures, and operational monitoring and auditing of software
should be the focus and target of security accreditation, not each individual application and
version of an operating system or application.

Another essential and necessary, though not sufficient, change that must occur is to adopt
modern commercial approaches to software and system security in the cloud that does NOT
involve BCAPs, Internet Access (choke) Points (IAPs), or CSSPs that cannot be performed
entirely by trusted commercial entities. DoD must adopt modern cloud security approaches such
as zero trust networks24, micro-segmentation, and eliminate the perimeter approach to network
security and trust that is based on assigned IP address or network connection point. Perimeter-
based security cannot scale to accommodate the bandwidth, traffic, and latency demands of
modern cloud access, applications, and services. Furthermore, it is a failed architectural practice
that has proven to be readily exploitable by adversaries and is especially vulnerable to insider
threats.

24 https://www.oreilly.com/library/view/zero-trust-networks/9781491962183/ch01.html

https://www.oreilly.com/library/view/zero-trust-networks/9781491962183/ch01.html

SWAP Study Final Release, 3 May 2019 S145

Appendix F.6: Requirements Subgroup Report

Contributing authors: Fred Gregory (lead), Philomena Zimmerman, Jeff Boleng, Margaret Palmieri,
Jennifer Edgin, Owen Seely, Victoria Cuff, and Donald Johnson

The Department of Defense (DoD) in 2003 institutionalized the identification and validation of
requirements via the Joint Capability Integration and Development System (JCIDS). Created to
support the statutory responsibility of the Joint Requirements Oversight Council (JROC), it is
one of three processes (Acquisition, Requirements, and Funding) that support the Defense
Acquisition System (DAS). Considered revolutionary in its design, moving DoD from a threat-
based to a capability-based model, it has begun to show its age in today’s era of software-
intensive systems intending to leverage agile software practices. These evolving agile practices
upend traditional industrial-age process attempts to credibly and accurately predict a future 15-
20 years away, necessitating unimaginable precision and foresight upfront in support to
capability development. The requirement process, writ large, must adapt to support delivering
capabilities at the speed of relevance; processes, cultures, and expectations of the Service and
Joint Force requirement communities.

Pain Points

A byproduct of top-level requirement flow down is rigidity and over specificity at the derived

requirements level, that greatly hinders agile software design. Capability validated by the JROC
does not proscribe requirement allocation to either hardware or software solutions. However,
the resulting flowdown of derived requirements incorporated into the source selection/contract
award and the subsequent allocation of these between hardware and software by the prime can
ultimately discourage software design flexibility. The decisions, often made years before
software coding even begins, locks the prime and the government into a proscribed path that
often does not produce the desired warfighter capability within the needed time frame.
Preserving software design flexibility must be a key component throughout the requirements
validation process. “Requirers” will need to learn to settle for “less” not “more” at capability need
inception.

Too often exquisite requirements, intended to be 100 percent correct, are levied on a system

that in turn drives extensive complex software requirements and design, affecting development,

integration, and system test. Today’s requirements process more closely mimics the “big-bang”
theory often vilified by industry, government, and Congress. As the warfighting community loses
faith in the acquisition community’s ability to meet their commitments through timely incremental
improvements, the temptation to “gold-plate” a requirement becomes more prevalent. Likewise,
as the acquisition community is forced to defend shifting warfighter priorities in budget
deliberations and Congressional engagements, the temptation to “lock requirements down
early” permeates acquisition strategies. With both of these choices in play, exquisite
requirements must be described perfectly at capability inception in order to maintain a low-risk
acquisition program - obviously an impossible outcome.

Data sets are siloed within programs - a common Law of Requirements is that programs of

record (PoR) try to avoid dependencies with other PoRs. By tying SW to a PoR, it becomes

SWAP Study Final Release, 3 May 2019 S146

nearly impossible to transfer that code across systems and data environments. Data “lakes,”
“pools,” and “ponds” will be the foundation for future weapon system data repositories, and the
requirements process must be flexible enough to accommodate this new archetype. Breaking
from the past mold of tying software code to a program of record and a specific data
environment frees the program manager from the arduous task of integrating seams across
multiple PORs.

Example. The Navy operates forward at sea and on-shore at maritime operations centers
(MOCs). Command and control between sea and shore is a key aspect of how they fight—they
need shared battlespace awareness at aligned actions across distributed units at best.
However, the systems afloat and ashore are not always the same because ships need systems
that are hardened for combat at sea. If a new algorithm can help manage supply and logistics
on the cloud ashore, it may not run the same at sea because different system exists afloat.
Extrapolating across Services, the USAF writes an algorithm to optimize F-16 maintenance,
however it is highly unlikely that the Navy can pick it up and apply it to F-18s. This depends on
the vertical integration of the algorithm, data, and system (PoR).

Desired state. Go from Sailor (Airman, Rifleman, etc)-stated need to software delivery in their
hands within days to support future conflicts. This necessitates a process for
concept/requirements determination/setting that takes advantage of the agility in software
development and software products to increase the agility and modifiability in our systems.
Requirements flow down must also maintain a broad-based approach into the lowest levels of
design. We also note that one of the overarching agile principles is that “increments are small.”
Fast requirements, fast deployments and fast test cycles for usefulness are tough to accomplish
with huge, monolithic software projects. Start small, stay small! Finally, recognizing that
documenting and contracting for a moving target is not easy but must be done.

Obstacles. Breaking the tyranny of siloed PoRs will require a concerted effort across the
Department, Combat Support Agencies, and will require Congressional engagement and
support. Considerable cultural barriers must also be overcome as the algorithms themselves
become capability, and the methods used to document, validate, and maintain currency enter
the mainstream. Complexity and dependencies among multiple elements prevent widespread
usage of Family-of-Systems (FoS) and System-of-Systems (SoS) requirement documents.
Government requirements and acquisition communities take on extra oversight burden when
they take a FoS or SoS approach because they have to manage all the pieces coming together
effectively. Lastly, current statutory guidance does not promote, encourage, or reward the use
of agile software development practices or environments.

Ideas for Change

● The Joint Staff should consider revising JCIDS guidance to separate functionality that
needs high variability from the functionality that deemed “more stable” (e.g., types of
signals to analyze vs. allowable space for the antenna). Then implement a “software box”
approach for each, one in which the contours of the box are shaped by the functionality
variability

SWAP Study Final Release, 3 May 2019 S147

● OSD should consider identifying automated software generation areas that can apply to
specific domains

● The Joint Staff should consider revising JCIDS guidance to document stable concepts,
not speculative ideas.

o Specifying needed capabilities is important up front, however it must be
acknowledged that initial software requirements need to be “just barely good
enough” for the situation at hand or, in other words, “document late”

o Acknowledge that software requirement documents will iterate, iterate, iterate.
JCIDS must change from a “one-pass” mentality to a “first of many” model that is
inherently agile delegating approval to the lowest possible level

● DoD should consider instituting a distributed model-based approach to requirements

development extended across the enterprise
o The model should be used to develop result-based metrics for requirement

evaluation

● The Joint Staff should consider revising JCIDS guidance to focus on user needs,
bypassing the JCIDS process as needed to facilitate rapid software development.
Guidance should specifically account for user communities (e.g., Tactical Action Officer
(TAO), Maritime Operations Center (MOC) director) that do not have one specific PoR
assigned to them, but use multiple systems and data from those systems to be effective

● OSD and the Joint Staff should consider creating “umbrella” software programs around
“roles” (e.g., USAF Kessel Run)

SWAP Study Final Release, 3 May 2019 S148

Appendix F.7: Security Accreditation/Certification Subgroup Report

Contributing authors: Leo Garciga (lead), Tom Morton, and Ana Kreiensieck

The Department’s current Security Certification and Accreditation (C&A) process is a complicated
and time-consuming process that is measured in months and years. The process is typically seen
as a serial process that occurs after development with a checklist mentality. While this fits with a
waterfall approach to development, the Department is changing to an agile, DevSecOps
approach. The overall security paradigm must change from one where updates to software
happen optimistically on a yearly basis to one where software is updated weekly or daily in
response to emerging threats and this is recognized as more secure than the slow, static process.
Additionally, we must strive to accredit the process, tools, and platforms to allow and enable
Continuous ATO when software changes meet the required thresholds.

Pain Points

Complex, time-consuming, and misapplied process. Although developing and operating software
securely is a primary concern, the means to achieve and demonstrate security is overly complex
and hampered by inconsistent and outdated/misapplied policy and implementation practices (e.g.,
overlaying historical DoD Information Assurance Certification and Accreditation Process
(DIACAP) process over Risk Management Framework (RMF) controls for individual pieces of
software versus system accreditation). The sense is that the Certification and Accreditation (C&A)
process is primarily a “check-the-box” documentary process, adds little value to the overall
security of the system, and is likely to overlook flaws in the design, implementation, and the
environment in which the software operates.

No way to calculate total costs of C&A process. The Department needs to be able to calculate
the true and component costs for implementing the RMF and C&A in order to identify
inefficiencies, duplicative capabilities, and redundant or overlapping security products and
services that are being acquired or developed. Absent a set of metrics it is difficult to prioritize risk
areas, investments, and evaluating risk reduction and return on investment.

Lack of top-down security requirements. The Department has not decomposed security
requirements from an enterprise level to a mission level to a functional implementation level.
Programs waste resources implementing security controls that should be inherited.

Lack of automation. The C&A process is predominantly a manual process which makes it a very
low process. Programs must plan in terms of months and years to get a product through the
security accreditation process. This slow process does not provide the warfighter the timely,
modern solutions that are needed.

Desired State

Accredit the process, not the product. Done correctly, security is applied from the beginning of
software development using automated tools. Before transitioning into operations, an Authorizing
Official (AO) reviews the process under which the software was developed and accepts the risk
as determined from various scans and tests. The AO signs a Continuous ATO so that as long as

SWAP Study Final Release, 3 May 2019 S149

the process remains intact and is continuously operationally monitored, the subsequent software
releases are accredited.

Obstacles

Two primary obstacles are culture change and workforce skills. The current security culture is that
security is a checkbox activity at the end of the development process. As RMF is implemented,
this is beginning to change the culture of security from compliance to continuous risk assessment.
However, the process is still very manual. The culture change needs to include using automation
to speed up risk assessment and continuous risk monitoring of operational software.

The other obstacle is the security and accreditation workforce skill set. While tools can provide
reports and speed up security activities like scans and code analysis, it takes a particular skill set
to understand those inputs and recommend or make at-risk decisions. The current security
workforce must be trained in these new skills.

Ideas for Change

Embrace DevSecOps. The Department should embrace DevSecOps (not just DevOps) and
provide the necessary resources to develop the common software components and automation
to assemble, test, accredit, and operate software systems. DevSecOps also includes policy-
supported processes, certified libraries, tools, and an operational platform (with appropriately
instrumented run-time software), and a toolchain reference to implementation to produce “born
secure” software.

Automate, Automate, Automate! The Department needs to provide automated tools and services
needed to integrated continuous monitoring with the development life cycle, enable continuous
assessment and accreditation, and delegate decision making at the lowest level possible.
Examples of automation are using static code analysis during the “build” stage, running
automated unit tests, functional test, regression tests, integration tests, and
resiliency/performance tests during the “test” stage, using dynamic code analysis, fuzzing scans,
running container security scans, STIG compliance scans, and 508 compliance scans during the
“secure” stage, and running continuous monitoring tools and ensuring logs are being pushed to
the appropriate entity during the “monitoring” and “operational” stages.

Define top-down implementation requirements. The Department needs to ensure that each Joint
Capability Area (JCA) flows-down its strategy, best practices, and implementation
requirements/guidance for security and accreditation to allow the Component responsible for
implementing the software to appropriately tailor RMF and plan the development, accreditation,
and operation of the software. Furthermore, each JCA should endeavor to clearly state its risk
profile and tolerance so that the RMF can be applied effectively and appropriately mitigate
identified risks.

Education is necessary at all levels. As security is “baked in” to software during the development
process, people must be educated about what that means as different tools look at different
security aspects. They must also be educated in what it means to bring different security reports
together and make a risk decision, both during development, and continuously during operations.

SWAP Study Final Release, 3 May 2019 S150

Culturally, people must learn to appreciate that speed helps increase security. Security is
improved when changes and updates can be made quickly to an application. Using automation,
software can be reviewed and updated quickly. The AO must also be able to review
documentation and make a risk decision quickly and make that decision on the process and not
the product and document it in a Continuous ATO.

SWAP Study Final Release, 3 May 2019 S151

Appendix F.8: Sustainment and Modernization Subgroup Report

Contributing authors: Kenneth Watson (lead), Stephen Michaluk, and Bernard Reger. Additional
advice / assistance from SEI

Improving the materiel readiness of our fielded weapon systems and equipment is an imperative
across the Department in accordance with the new National Defense Strategy.25 The time is now
to shift from our traditional, hardware-centric focus and identify what core26 means for software
intensive weapon systems and associated software engineering capabilities. Software is a
foundational building material for the engineering of systems, enabling almost 100 percent of the
integrated functionality of cyber-physical systems, especially mission- and safety-critical software-
reliant systems. More simply, these systems cannot function without software.

For fielded weapon systems and military equipment, software life-cycle activities follow somewhat
predictable cycles of corrective, perfective, adaptive, and preventative modifications while major
modifications drive new periods of development. Software development activities, even those
following agile methods, encounter a phase where the program transitions from adding new
features to supporting and sustaining day-to-day use and operations. At that point, development
changes and signals a move to “sustainers” within the organic industrial base. Therefore,
sustainment may be defined as the sum of all actions and activities necessary to support a
weapon system or military equipment after it has been fielded.

Prioritizing the transition to software sustainment during requirements and engineering
development is critical to timely, effective, and affordable sustainment, regardless of how software
engineering organizations are structured and resourced. Software sustainment organizations
must be engaged and embedded at the earliest design stages to ensure we can keep pace with
new capabilities as systems become operational. Lastly, access to software source code,
emphasizing an early focus on designing for sustainment, and investment into establishing and
modernizing system integration laboratories, are just a few of the challenges faced by the DoD
software enterprise.

Pain Points

Applying a hardware maintenance mindset to software hinders DoD’s ability to better leverage

the organic software engineering infrastructure. DoD maintenance policies and maintenance-
related Congressional statutes have traditionally been optimized for hardware and are difficult to
change due to long standing policies, practices, inertia, and incentives. The goal of hardware
maintenance is to repair and restore form, fit, and function. This mindset does not align well with
the ever evolving nature of software. The scope of software engineering for sustainment mitigates
defects and vulnerabilities, fact-of-life interface changes, and add new enhancements. Software
is never done and any time it is “touched,” it triggers the software engineering development life

25 “Summary of the 2018 National Defense Strategy” (Washington, DC: Department of Defense, 2018),
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf.

26 As defined in 10 USC 2464, Core logistics capabilities.

https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf

SWAP Study Final Release, 3 May 2019 S152

cycle which produces a new configuration. Therefore, any system that is dependent on software
to remain operational, is always in a state of continuous engineering during sustainment (or O&S
phase of the life cycle).

DoD’s acquisition process is not emphasizing an upfront focus on design for software sustainment

and a seamless transition to organic sustainment. It is critical that software be designed to be
more affordably sustained with high assurance and the ability to integrate changes and
enhancements more rapidly to provide a continual operational capability to the warfighter.
Moreover, software must be decoupled from hardware to the greatest extent possible in order to
enable leveraging rapid and continuous hardware improvements. We need to place increased
emphasis in acquisition on designing in software sustainability with a consistent emphasis on how
DoD contracts for software as well as the span of requirements, architecture, design,
development, and test. Additionally, this includes making provisions for timely access to the
necessary range of software technical data to enable timely and effective organic software
engineering and rapid re-hosting. It is essential that DoD and industry work collaboratively to meet
the increasing software sustainment demand.

Public Private Partnerships (PPPs) provide one means to leverage DoD and industry capabilities
as a team to deliver warfighter capability. However, PPPs and other options are not being
considered up front and leveraged across DoD as an inherent element of the acquisition and
engineering strategy of programs. This team strategy may facilitate mutual access to the technical
data inherent in executing the software development life cycle.

Limited visibility of DoD organic software engineering infrastructure, capabilities, workload, and

resources. Title 10 USC 2464 establishes a key imperative for DoD to establish core Government
Owned Government Operated (GOGO) capabilities as a ready and controlled source of technical
competence and resources for national security. DoD’s focus has traditionally been on hardware
and therefore there has seen significant Service and DoD enterprise focus on hardware GOGO
capabilities and infrastructure for core. However, there has been significantly less upfront
acquisition focus and visibility on what core means for software intensive systems and the
associated GOGO software engineering capability. For the traditional DoD hardware-centric
model, core capability is based on individual weapon systems or platforms at the depot level. All
systems operate interdependently in a net-centric environment, where force structure and
execution of mission capabilities are products of a system-of-systems capability. In a software
intensive environment “Go to War” analysis of what core means as it relates to software requires
more strategic thinking about core than just focusing on individual weapon systems or platforms
(aircraft, ship, tank, etc.) as hardware. The hardware-centric focus on weapon systems likely
underestimates the scope and magnitude of what should be considered a core requirement in a
software intensive systems operational environment.

Desired State. Require government integrated software sustainment participation from the very
beginning of development activities.

SWAP Study Final Release, 3 May 2019 S153

Ideas for Change

● Title 10 USC 2460 should be revised to replace the term software maintenance with the
term software sustainment and a definition that is consistent with a continuous engineering
approach across the life cycle.

● DoD should establish a capability for visibility into the size and composition of DoD’s
software sustainment portfolio, demographics, and infrastructure to better inform
enterprise investment and program decisions.

● A DoD working group should be established to leverage on-going individual Service efforts
and create a DoD contracting and acquisition guide for software and software sustainment
patterned after the approach that led to the creation of the DoD Open Systems
Architecture Contracting Guide.

● Acquisition Strategy, RFP/Evaluation Criteria, and Systems Engineering Plan should
address software sustainability, re-hosting, and transition to sustainment as an acquisition
priority. The engineering strategy and plan should engage software sustainment
engineers upfront and co-locates government software sustainment engineers on the
contractor software development teams to enable effectively and timely transition to an
organic sustainment capability.

● The definition of “core capabilities” in 10 USC 2464 should be revisited in light of warfighter
dependence on software intensive systems to determine the scope of DoD’s core organic
software engineering capability, and we should engage with Congress on the proposed
revision to clarify the intent and extent of key terminology used in the current statute.

● DoD should revise industrial base policy to include software and DoD’s organic software
engineering capabilities and infrastructure. Start enterprise planning and investment to
establish and modernize organic System Integration Labs (SILs), software engineering
environments, and technical infrastructure; invest in R&D to advance organic software
engineering infrastructure capabilities.

SWAP Study Final Release, 3 May 2019 S154

Appendix F.9: Test and Evaluation Subgroup Report

Contributing authors: Amy Henninger and Greg Zacharias

The fundamental purpose of DoD test and evaluation (T&E) is to provide knowledge that helps
decision makers manage the risk involved in developing, producing, operating, and sustaining
systems and capabilities. While colloquially referred to as a single construct, T&E is composed of
two distinct functions: obtaining the data and assessing the data. This distinction is important
because the T&E community will report “pain points” in both functions. There are also two major
types of test: Developmental Test (DT) and Operational Test (OT). DT, by nature, is
“experimental,” performed on behalf of the Program Management Office (PMO), supporting a
formative evaluation and identifying design elements that will drive mission-critical capability to
inform the evolution of component and system design. OT is “evaluative,” performed by and on
behalf of the warfighter, supporting a summative evaluation of system capabilities to support
warfighting missions across the operational envelope.

Because T&E has historically occurred toward the end of, often, a long and costly acquisition
process (e.g., requirements, design, and development), it can be perceived as simply adding time
and cost to an already late and over-budget effort; PMOs therefore can view this “last step” T&E
as simply making the situation worse. And if T&E finds a system substantially defective,
necessitating expensive re-engineering of the design late in developing, it adds to the perception
that T&E simply adds cost and time to project execution. A continuous iterative T&E model is
clearly called for, occurring alongside design and development, where T&E can both; catch
defects early so they can be solved quickly and cheaply and inform/shape system requirements
based on early feedback from the warfighter. Experience shows that active, early involvement by
independent testers—combined with a PMO who responds to the independent testers’ advice—

makes a positive difference to program outcomes. We have seen this in modern iterative
approaches, such as agile development, applied effectively in DoD, especially in Major Automated
Information Systems (MAIS).27 Taken together, these observations point to the need to move
away from what can be a linear waterfall process segregated by siloes, to a more iterative and
collaborative model that fuses all development, test, processes, tools, and information to enable
the continuous delivery of tested capability. T&E can then be viewed as saving time/cost in
development, instead of adding time/cost.

Pain Points and Obstacles

DoD lacks the enterprise digital infrastructure needed to test the broad spectrum of software types

and across the span of T&E to support developmental efficiency (in DT) and operational

effectiveness (in OT). Digital models of test articles (e.g., “Digital Twins”) are not always available
and not built to common standards. T&E environments, including threat surrogates or models, are
often program-focused and funded, with short-term development goals and narrowly-scoped
capabilities defined by the program. Building (and re-building) representative T&E environments
is time and cost prohibitive for individual programs and results in duplicative infrastructure
investments across DoD. Moreover, current T&E practices in the Services, including those

27 FY16 DOT&E Annual Report.

SWAP Study Final Release, 3 May 2019 S155

focused on software-intensive systems, do not adequately test systems in Joint and Coalition
environments, nor do they consistently use appropriate risk-based, mission-focused testing.

DoD lacks the enterprise data management and analytics capability needed to support the

evaluation of test data in accordance with the pace of modern iterative software methods. As data
required to make informed acquisition decisions continues to grow due to higher resolution
measurements, higher acquisition rates, and other additional requirements for software intensive
systems (e.g., interdependency, need to operate in system-of-systems, family-of-systems, Joint,
and Coalition environments), the need for a T&E infrastructure to collect, aggregate, and analyze
this data must likewise evolve to keep pace. More timely data fusion will require improvements in
data management techniques, access speeds, data access policies, data verification techniques,
and the availability of more intelligent and agile tools. Without this infrastructure, and within the
current paradigm, we are failing to adequately gather and analyze these highly diverse and
complex datasets, which leads to invalid assessments of acquisition program progress and
system performance, undercuts mission readiness, and places warfighters at risk. This gap
becomes an even more prominent choke point in an iterative cycle. Thus, even if we mitigate the
first pain point with modernized realistic test environments, and had the capability to collect the
appropriate mix/quantity of data in testing, we would still not have the analytics horsepower to turn
around an assessment to support the pace of an Agile/DevSecOps iterative cycle.

DoD lacks the resources needed to adequately emulate advanced cyber adversaries, to support

fielding of trusted, survivable, and resilient software-intensive defense systems. Various oversight
entities (e.g., NDAAs and GAO Reports) have acknowledged this gap, and past DOT&E Annual
Reports have documented a significant number of adverse cyber findings in OT that should not
require an operational environment to discover. While the gap exists now (in the absence of
modern software methods), it will become an even more prominent choke point in a rapid
development and operational fielding paradigm. We do not have the advanced cyber test
resources (manpower, methods, and environment) to support a true Agile/DevSecOps approach
to developing, testing, and fielding the broad range of software-intensive systems needed by DoD
now and in the future, in an environment increasingly populated by advanced cyber adversaries.

DoD lacks a modern software intellectual property (IP) strategy to support T&E in a rapid software

development and fielding environment. Overcoming this pain point is critical to overcoming all of
the three previously described pain points. Specifically, none of the previously described pain
points is fully achievable without sufficient access to necessary technical data associated with the
software deliverables. Software acquisition processes are and will continue to be suboptimal (with
respect to time and risk) without access to relevant technical data and this gap will become an
even more prominent choke point in an Agile/DevSecOps-based paradigm without that access. A
modern software IP strategy must include access to software environments (e.g., source code,
build tools, test scripts, and cybersecurity artifacts/risk assessments) so tests are repeatable,
extendable, and reusable. This strategy will also have to strike a balance with the IP rights of the
innovator (usually industry) to ensure continued engagement of DoD with leading-edge
technology organizations.

A modern software IP strategy would support the three previously described pain points via:

SWAP Study Final Release, 3 May 2019 S156

● Enhance our ability to operationalize the concept of “digital twins,” with sufficient access
to the source code of a given system (balancing DoD and innovator IP rights), so as to be
able to adequately represent that system.

● Support the instrumentation of software-intensive systems as needed during testing.

● Support cyber vulnerability assessments and the assignment of risks to residual
vulnerabilities, via access to system data (e.g., code and technical data).

Desired State

While DoD does a fair amount of “integrated testing” now (across DT and OT), that is not the same
as “integrating T&E with the Voice of the End User continuously and alongside software
development.”28 T&E must strive for continuous software testing, automated and integrated into
the development cycle to the fullest extent possible, across the entirety of DoD’s software portfolio.
The qualifier, “fullest extent possible” is important, as many experts have acknowledged that no
single “one size fits all” approach will work best across the entire DoD software portfolio all of the
time.29,30 In this envisioned state, independent testers would work alongside developers and
operators to help software development programs succeed and deliver capability at the speed of
need. T&E would no longer be perceived as “slowing things down” or “costing money post-
development” because it occurs toward the end of a highly linear and inefficient process, but would
instead be associated with saving time and money during development. This vision, applied
across the entire DoD software portfolio (i.e., beyond just IT or MAIS) requires the right kinds of
tools, architectures and standards (see first three pain points), access to the right kind of data
(see second and fourth pain points), and an ability to partner with and work alongside the
developer, while yet maintaining independence and objectivity in our assessments.

Ideas for Change

Build the enterprise-level digital infrastructure needed to streamline software development and
testing across the full DoD software portfolio. Beyond the DevSecOps platform (or Digital
Technology concept), DoD requires a digital engineering infrastructure to streamline integration
and testing. This suggests that the DevSecOps platform must be made available to all DoD
software developers and:

● Integrated with (systems-level) model-based/digital engineering infrastructure, including
digital twin(s),

● Integrated with existing T&E infrastructure (e.g., open-air ranges, labs, and other test
facilities),

● Integrated with comprehensive tactical/mission-level infrastructure, and

● Available to others who could benefit (e.g., analysis, training, and planning).

28 Steven Hutchison, “Test and Evaluation for Agile Information Technologies,” ITEA Journal 31(2010): 461.
29 2018 Defense Science Board Task Force on Design and Acquisition of Software for Defense Systems.
30 Boehm and Turner, 2009. Balancing Agility and Discipline: A Guide for the Perplexed. Addison-
Wesley. Boston, MA.

SWAP Study Final Release, 3 May 2019 S157

Even with this kind of complete testing infrastructure providing the capability to collect the
appropriate mix/quantity of data in testing, we would still not have the analytics horsepower to turn
around an assessment sufficiently rapidly to support the pace of an Agile/DevSecOps iterative
cycle. We must develop the enterprise knowledge management and data analytics capability for
rapid analysis/presentation of technical data to support deployment decisions at each iterative
cycle.

Finally, to advance our cyber test resources such that we can achieve overmatch to our most
capable adversaries while yet supporting the pace of the modern software development, DoD
should expand DOT&E’s current capability to obtain state-of-the-art cyber capabilities on a fee-
for-service basis. This provides a straightforward way to acquire skilled cyber personnel from
leading institutions (e.g., academia, university affiliated or federally funded research and
development centers), to help the DoD to keep pace with advanced cyber adversaries.

SWAP Study Final Release, 3 May 2019 S158

Appendix F.10: Workforce Subgroup Report

Contributing authors: Maj Justin Ellsworth (lead), Sean Brady, and Kevin Carter

DoD’s workforce (civilian, military, and supporting contractor personnel) is our most valuable
resource. The workforce’s capacity to apply modern technology and software practices to meet
the mission is the only way we can remain relevant in increasingly technical fighting domains,
especially against our sophisticated peers, Russia and China.

Improved management of the Department’s software acquisition talent will also drive success
across the other subgroups and sections of this report. Policies, processes, and bureaucratic
practices are never a sufficient substitute for competence.

The Department’s challenges are well documented and well known by the software acquisition
and engineering professionals who suffer most from the accrued technology, cultural, and
leadership debt. The Workforce Subgroup identified prevalent pain points, but focused on
providing concrete and actionable solutions for improving the recruitment, retention, development,
and engagement of the workforce.

Pain Points

The Department’s reputation as an employer is a weakness rather than a strength. Candidates
base their employment decision on a variety of factors, but the organization’s reputation and day-
to-day work are chief among their considerations. The demand, and competition with the private
sector, for an experienced and qualified workforce, is increasing as threats to our data security
become more sophisticated. DoD has a reputation as an antiquated employer that rewards time
in grade rather than competence and most often outsources its technical execution. Technical
employees often serve as oversight or move away from “hands-on-keyboard” as they advance in
their careers; no longer contributing to creative or innovative execution.

The Department does not adequately understand which competencies and skill sets are

possessed and needed within its software acquisition and engineering workforce. Without the
ability to distinguish the workforce, DoD cannot effectively drive human capital initiatives.
Furthermore, there is no enterprise-wide talent management system to manage the workforce
(e.g., geographically or by skills), which leads to bureaucratic silos and the inability to leverage
the Total Force.

The Department has not prioritized a comprehensive recruiting strategy or campaign targeting

civilians (90 percent of the acquisition workforce) for technical positions. When candidates do
apply, they face an “overly complex and lengthy hiring process (that) frequently results in the
Government losing potential employees to private sector organizations with more streamlined
hiring processes,” according to the President’s Management Agenda.31

31 “President’s Management Agenda: Modernizing Government for the 21st Century,” (Washington, DC: Office of Management

and Budget, April 2018), 20, https://www.whitehouse.gov/omb/management/pma/.

https://www.whitehouse.gov/omb/management/pma/

SWAP Study Final Release, 3 May 2019 S159

There is no comprehensive training or development program that prepares the software

acquisition and technical workforce to adequately deploy modern development tools and

methodologies within our dynamic environments. Hiring top technical talent into the Department
will never be a silver bullet. The Department also needs to consider how to equip, reward,
promote, and empower its existing workforce.

The Department is unable to leverage modern tools that are common in the private sector and

our personal lives (e.g., cloud storage and collaborative software) due to bureaucratic barriers.
Top talent expects access to these tools to meet mission demands, and their absence may
discourage qualified candidates from applying or staying. Although the Department has pockets
of innovation and entrepreneurship within rapid fielding offices across the Services, this culture
has not scaled to the larger acquisition programs and offices. Long-cycle times, bureaucratic silos,
and information-hoarding prevail.

Desired State

The Department requires a workforce capable of acquiring, building, and delivering software and
technology in real time, as threats and demands emerge. This workforce should resemble
successful technology companies that must move quickly to meet market challenges. They do so
by promoting an agile culture, celebrating innovation, learning from calculated failures, and
valuing people over process.

The Department’s workforce embraced commercial best practices for the rapid recruitment of
talented professionals. Once onboarded quickly, they will use modern tools and continuously
learn in state-of-the-art training environments, bringing in the best from industry and academia,
while pursuing private-public exchange programs to broaden their skill sets.

Obstacles

The bureaucratic culture of the Department creates significant barriers compared to a commercial
sector ecosystem that moves at the speed of relevance. These barriers are now ingrained within
the institution, perpetuating a risk-averse environment that represents the most significant
obstacle to reform. While there are minor legislative solutions to achieving the desired state, we
believe that the Department has the necessary authorities and flexibilities, but has shown lack of
impetus to move to the modern era of talent management.

While small pockets of expertise and progress exist, the Department as a whole lacks sufficient
understanding of current software development practices and talent management models that
support them. Studies on the workforce dating back 35 years that show “limited evidence these
different efforts had any lasting impact or resulted in meaningful outcomes.”32

32 McLendon, Michael H.; Shull, Forrest; Miller, Christopher, “DoD’s Software Sustainment Ecosystem: Needed Skill Sets,”

(Naval Postgraduate School, Monterey, California, April 30, 2018).

SWAP Study Final Release, 3 May 2019 S160

Ideas for Change

Foundational. Taking into account history and the significant challenges with changing the culture
in a bureaucracy, the Department should empower a small cadre of Highly Qualified Experts and

innovative Department employees to execute changes from this report. This cadre is empowered
with the authority to create, eliminate, and change policies within the Department for organizations
beyond themselves. If needed, create a software acquisition workforce fund similar to the existing
Defense Acquisition Workforce Development Fund (DAWDF). As called out by the Defense
Science Board, the purpose of this fund will be to hire and train a cadre of modern software
acquisition experts. This fund should also be used to provide Agile, Tech, and DevSecOps
coaches in Program Offices to support transformations, adoption of modern software practice and
sharing lessons across the enterprise.33

Workforce Foundations. The Department must develop a core occupational series based on
current core competencies and skills for software acquisition and engineering. This occupational
series should encompass all workforce roles required for modern software development and
acquisition - engineers, designers, product managers, etc. Additionally, the Department should
create a unique identifier or endorsement of qualified (experience & training) individuals who are
capable of serving on an acquisition for software. This includes the development of a modern
talent marketplace (and associated knowledge and skill tags/badges) to track these individuals.
The competencies for this series should be flexible enough to evolve alongside technology,
something that has constrained the 2110 IT Series.

Contractor Reforms. Defense contractors develop the majority of software in the Department. The
Department should incentivize defense contractors that demonstrate modern software
methodologies; this may take the form of software factory demonstrations and rapid software
delivery challenges when evaluating proposals. Additional consideration should be given to
contractors with demonstrated excellence creating commercially successful software.

Recruitment and Hiring. The Department must overhaul its recruiting and hiring process to use
simple position titles and descriptions, educate hiring managers to leverage all hiring authorities,
engage subject-matter experts as reviewers, and streamline the onboarding process to take
weeks instead of months. The Department needs to embrace private-sector hiring methods to
attract and onboard top talent from non-traditional backgrounds (e.g., hackers and
entrepreneurs). Too often, these types of candidates are passed over or require special
authorities to join the Department, due to lack of education or regular pay stubs. Furthermore, the
Department must develop a strategic recruitment program that targets civilians, similar to its
recruitment strategy for military members. This includes prioritizing experience and skills over
cookie-cutter commercial certifications or educational credentials.

Development, Advancement, Engagement, and Retention. The Department must pilot
development programs that provide comprehensive training for all software acquisition
professionals, developers, and associated functions. Programs should be built in partnership with

33 Design and Acquisition of Software for Defense Systems,” Defense Science Board, Feb. 2018,

https://www.acq.osd.mil/dsb/reports.htm.

SWAP Study Final Release, 3 May 2019 S161

academia and industry, leveraging commercial training solutions rather than custom and
expensive Federal solutions. This will include continuing education courses to help the workforce
stay current and ensure technical literacy across the acquisition workforce. The Department must
emphasize promoting and rewarding those that have proven both commitment and technical
competence. Continually looking outside the Department is demoralizing and insulting to existing
professionals that demonstrate innovation, excellence, and the ability to deliver already. The
Department should incentivize and provide software practitioners access to modern engagement
and collaboration platforms to connect, share their skills and knowledge, and develop solutions
leveraging the full enterprise.

Finally, the Department should encourage greater private-public sector fluidity within its
workforce. Federal employees who come from the private sector bring with them best practices,
modern methodologies, and exposure to new technologies. Federal employees who leave bring
their understanding of our unique mission and constraints, helping the private sector develop
offerings and services that meet our needs.

SWAP Study Final Release, 3 May 2019 S162

Appendix G: Analysis the Old-Fashioned Way:
A Look at Past DoD Software Projects

The Department has been building and buying software for decades. The study’s initial idea was
to take a cutting edge machine learning tool, hook it up to the Department’s databases, and do
an analysis across all of the plentiful software data collected over the years.

Unfortunately, initial attempts at analysis quickly led to the realization that the Department had
never strategically collected data on its software. The data that have been collected cover only a
subset of the systems the Department acquires and are typically collected by hand, with all the
potential for erroneous or missing values that that implies. The granularity at which data are
collected also does not typically support insight into specific questions of acquisition performance.
Without massive data calls, enormous amounts of PDF scanning, and an impossible number of
non-disclosure agreements, a comprehensive analysis would not be possible.

Instead, the SWAP members broke the analysis into two main efforts:

1. Analysis of the available data in order to test the board’s hypotheses as they evolve.
Subject Matter Experts who are familiar with the existing data and its constraints explored
the available data in search of insights that would confirm or refute the board’s hypotheses
about DoD software acquisition performance. These results are described in this
appendix.

2. Application of cutting edge machine learning and other modern analytical techniques to
datasets from outside of DoD, to support reasoning about the type of insights that could
be gained and reported, if the Department had access to more comprehensive data about
its software. These results are described in Appendix D.

G.1 Data Used in This Analysis

The focus of this study is on software-intensive programs—and the specific software scope within
these programs—presenting top-level insights into software acquisition performance. We focused
our analysis on a few major data sources collected by the Department, which can provide insight
on these issues.

The data in our first source are known as Software Resources Data Reports (SRDRs). The SRDR
data were selected for use because they are specifically focused on the software activities of DoD
acquisition programs. The SRDR is a contract data deliverable that formalizes the reporting of
software metrics data and is the primary source of data on software projects and their
performance. The SRDR reports are provided at the project level or subsystem level, not at the
DoD Acquisition Program level. The data points included in the analyses reported here are
representative of software builds, increments, or releases. In many cases, there are multiple data
points in the set that represent different subsystems or projects from the same program.

SWAP Study Final Release, 3 May 2019 S163

The SRDR applies to all major contracts and subcontracts, regardless of contract type, for
contractors developing or producing software elements that meet specific criteria34 and with a
projected software effort greater than $20M.

SRDR reports are designed to record both the estimates and actual results of new software
development efforts or upgrades, with the goal of supporting cost estimation. The reports collect
many characteristics about software activities in both structured and unstructured formats. The
primary data analyzed in our work were size, effort, and schedule. Notably absent from the
SRDRs are any data about quality. Defect data have been optional until recently and hence were
not reported.

Other data sources used to explore some of the assumptions and recommendations of the DIB
are the IPMR (Integrated Program Management Report) and SAR (Selected Acquisition Report)
datasets. Programs in these datasets fall into the category of Major Defense Acquisition Programs
(MDAPs). These datasets include:

1. Software development effort measured in labor hours, software size, and development
activity duration metrics delivered as mandated respective to contractual agreements.

2. Software development performance as identified within each contract report. However,
each contract contained common elements supporting both software and non-software
activity on contracts. These were treated in proportion to the weight of software activity
cost on contract. These reports contain data for measuring contractor’s cost compared to
budget baselines on Department acquisition contracts as well as projections of cost at
completion.

3. Planned and executed schedule milestone dates reported to the Department at the
aggregate program level as required by acquisition policy. This information is included as
a part of a comprehensive summary of total program cost, schedule, and unit cost breach
information.

These software development effort metrics, contract performance, and program level schedule
data represent the best source of product development, contract cost, and schedule performance
information available on various projects throughout DoD. In addition, these datasets are also
independently validated by agencies within the Department and subject to audits that require
maximum fidelity to accounting standards.

It is worth noting that these datasets provide the best available information on DoD software
acquisition, but are mainly limited to contract cost and budget performance (versus technical
functionality performance) and were collected by hand. This scenario seems to address larger
structural and cultural problems:

34 Specifically, “within acquisition category (ACAT) I and IA programs and pre-MDAP and pre-MAIS
programs, subsequent to milestone A approval.”

SWAP Study Final Release, 3 May 2019 S164

● The Department has no real acquisition data system that holds anything more than top-
level data on our largest programs.

● There is no automated collection of acquisition data, despite the fact that software tools
and infrastructures, from which data can be automatically extracted, are integral parts of
the state of the practice in the software industry.

● For much of the limited software-specific data that we do have (for example, source lines
of code, or SLOC), this study has argued that they do not provide meaningful technical
insight. Metrics like SLOC are not what the private sector would use to assess and manage
programs.

● Leadership often relies on experience and trusted advisors because timely, authoritative
data are not available for real analysis.

G.2 Software Development Project Analysis

One area of analysis focused on the SRDR data to describe, at an enterprise- or portfolio-level,
what the Department is able to say about its software based on the software-specific data. As
described above, SRDR data are more project- or subcomponent-focused versus program- or
contract-focused; indeed, it is not easy and perhaps not possible to create a program-level
understanding of software activities from the SRDR data.

The results reported here address 3 three questions:

1. How well do software projects perform in terms of effort and schedule?

2. Is there a difference in project performance related to the size of the project and the use
of agile development?

3. How long do software projects take to reach completion?

The source of the data was the May 2018 compilation file published by members of the Software
Resources Data Report Working Group. This file contains 3993 submissions that yielded 475
initial reports of planning estimates, 598 reports of final actual values, and 295 pairs of initial and
final reports. Upon further investigation, 131 pairs contained full life-cycle information and
therefore serve as a better dataset for studying effort and schedule growth. Thus, while we base
our conclusions in this section on the best available data for software, it is important to keep in
mind the data represent only a small subset of the Department’s software.

The results presented below were primarily based on common statistical methods. Although a
variety of additional explorations were conducted, the results were not found to be stable or to
have achieved high confidence. These included dynamic simulation modeling, causal learning,
and analysis with repetitive partitioning and regression trees.

SWAP Study Final Release, 3 May 2019 S165

Software Project Effort and Schedule Performance

In the current DoD acquisition life cycle, substantial effort goes into defining requirements upfront
in extensive detail, and projecting the cost and schedule for achieving the capabilities so
described. Despite that, it is often said that the Department has problems acquiring the software
capabilities it needs within budget and schedule. This analysis explored whether there was
support for this conventional wisdom.

DoD projects in the dataset generally do indeed experience substantial effort growth. As seen in
the following figure, the median number of estimated hours is 22,250 while the median number of
actual hours is 30,120. (Note that the vast majority of points lie above the green line, indicating
that actual values were greater than estimated.) The median rate of growth is 25%. However,
there are some projects that expend less than their estimated effort, sometimes by a substantial
amount as reflected by the points within the red circle. Unfortunately, based on the data reported
we cannot discern whether they delivered the full committed functionality or not.

Figure G.1. Estimated and actual project hours for project with less than 300,000 estimated hours.

The growth in project duration is generally not as large as the growth in effort. The median planned
duration is 28 months and the actual duration is 34.9 months. The median growth in duration is
12%.

SWAP Study Final Release, 3 May 2019 S166

Figure G.2. Estimated and actual project duration.

Interestingly, effort and duration growth are only weakly correlated and the highly skewed nature
of their distributions means that averages create a more negative impression of performance than
may be warranted. That is, the average exaggerates the degree of growth across the portfolio of
projects. Nonetheless, in the data we have available, overruns of effort and duration are the norm.

Does Project Size Affect Performance?

The DIB has recommended that software programs should start small. The next analysis
examined the historical data available to test whether small programs performed better than large
ones, at least in terms of delivering capabilities on time and within budget.

To perform this analysis, projects were categorized in terms of their estimated equivalent source
lines of code (ESLOC)35 and effort. ESLOC is not collected but computed from the detailed SLOC
measures that are collected: ESLOC combines the different sources of lines of code, new,
modified, reused, and autogenerated, into a single count. Projects that were in the lower and
upper quartiles on both effort and ESLOC measures were labelled as small and large projects
respectively. This yielded 53 small and 55 large projects. An analysis of variance was conducted
for growth in effort and duration.

The results found that small projects do not outperform large projects. Large projects do have
less effort growth on a percentage basis but more growth in terms of raw hours. Surprisingly,

35 Elsewhere in this report, we reflect on the problems inherent with using SLOC as a measure. However,
this is a key measure that has been collected historically by the department and so represents the best
available data for this analysis.

SWAP Study Final Release, 3 May 2019 S167

schedule growth is very similar. Variation in performance overwhelms any apparent difference
and the results do not achieve statistical significance.

Figure G.3. Effort growth by project size.

Figure G.4. Duration growth by project size.

The fact that small projects still experience the same growth as large projects does not negate
the advice that projects should start small, iterate often, and be terminated early if unsuccessful,
since this can still result in significant savings in costs for projects that are not performing well.

Do Development Approaches Affect Performance?

There is much interest in the software development community and DoD in the use of agile
methods. While the most recently updated SRDR form explicitly calls out measures for agile
projects, this has not been the case for the historical SRDR data upon which these analyses rely.

SWAP Study Final Release, 3 May 2019 S168

Furthermore, the identification of the development approach is captured in an open text field. This
necessitated interpretation and grouping of the entries in order to perform this analysis. A
significant number of projects reported using “Waterfall,” “Incremental,” “Spiral,” or “Iterative”
approaches. The remainder suggest use of a customized or hybrid approach. For the analysis
here, “Waterfall” is compared to “Incremental,” “Spiral,” and “Iterative” projects.

Again, using ANOVA, the results indicate that effort growth does not significantly vary by
development approach. However, duration growth is significantly less for projects using
incremental development approaches as compared to waterfall (28% v 70% on average).

Figure G.5. Effort and duration growth by development approach.

How Long Does It Currently Take to Complete a Project/Deliver Software?

As can be seen in the following figure, it is very rare for a project to complete in 12 months or
less. Out of 371 projects used for this analysis, only 21 (6%) completed in this timeframe.

SWAP Study Final Release, 3 May 2019 S169

Figure G.6. Actual duration for 371 AIS, Engineering, and Real-time projects.

Additional Insights from the SRDR Data

The preceding analyses were guided by the recommendations and proposed measures in DIB
authored documents. In the course of performing those analyses, other questions and issues
were posed and investigated. Briefly, these findings are:

1. Extreme variability in project performance confounds the identification of statistically
significant results. This was noted above and is most likely actually due to performance
and reporting inconsistencies.

2. Planned values can be useful for establishing expectations regarding reported actual effort
and duration. That is, planned and actual values tend to be highly correlated with each
other.

3. Planning for reuse is associated with significantly more schedule growth as compared to
projects that do not plan for reuse.

The last one deserves more explanation as it is a somewhat counterintuitive result. Based on 275
projects that reported either no plan for code reuse or did plan for code reuse, the growth analysis
showed no statistically significant differences in effort growth, but a significant difference in the
amount of duration growth. Projects planning for code reuse had 52% duration growth as
compared to only 20% for those that did not plan for code reuse. This phenomenon has been
noted before and attributed to over-optimism about the amount and ease of code reuse. As the
ability to reuse code falls short, unplanned effort and time go into producing new or modified code
to compensate for the unrealized code reuse. Why effort growth is not significantly different is but
likely at least partially related to the extreme variability in the performance measures.

SWAP Study Final Release, 3 May 2019 S170

Opportunities for Improving SRDR Data for Use

Issues regarding the data quality of SRDR data used here hampered the analyses. As is noted
earlier, there is a substantial reduction from the number of submissions in the system to the
number of usable records. At its most extreme there are 131 high quality pairs (262 records) out
of the 3993 submissions included in the compilation dataset. That is, roughly 93% of the data is
discarded.

The following opportunities are available for improving SRDR data for use in addition to supporting
the needs of the DOD cost community. Briefly, they are:

1. Leverage data collection and reporting from automation within the software environments
(software factory). Minimize the need for manual entry and transformation.

2. Capture information about the quality of the delivered system.

3. Make the data more broadly available and encourage analyses into DoD software
challenges (DIB Recommendation A3).

4. Identify the information needs of the stakeholders and intended users of the data beyond
the cost community.

G.3 Software Development Data Analyses

A second investigation focused on cost and schedule performance data reported on recently
completed and ongoing software development efforts within DoD. As these data provided insights
within programs (and allowed understanding how values changed over time), we expected that
this analysis would allow for deeper dives that could better explain how software acquisition
occurs in programs.

This information was extracted from IPMRs, which are deliverables required by most contracts.
The team also reviewed SARs for the large ACAT I programs to gain perspective on programs as
they evolve over time.

Poor Data Quality and Inconsistent Data Reporting

There are approximately 130 ACAT I programs reporting research and development (R&D)
contract performance over the past 10 years. We discarded from our analysis:

● Contracts for which the first IPMR report showed 65% (or about two-thirds) completed in
work scope, reasoning that too much of the work had occurred before data collection
began;

● Contracts for which the latest IPMR reported work that was less than 70% complete,
reasoning that we would not have the ability to evaluate a significant portion of work
completed.

SWAP Study Final Release, 3 May 2019 S171

146 contracts (35%) did not meet these data quality criteria out of the total of the 413 ACAT I
program development contracts for which we have data (Figure 7). The fact that more than one-
third of contracts do not meet this criterion implies that DoD would benefit from improving the
quality and consistency of software development performance reporting. DoD cannot
comprehensively assess the performance and value of the billions of dollars in investment without
insight into a third of the complete portfolio.

Additionally, there are many data that are of limited utility due inconsistencies related to reporting.
These have to do with problems with filing the mandated regular reports, and a lack of contextual
data (i.e., metadata) being collected in a readily analyzable form. The DIB Software Metrics
Recommendations contain recommended best practices on data collection and metrics
definitions to not only capture data, but to establish standards meant to enhance software
development performance.

Cost and Schedule Data

The resulting list of contracts was prioritized based on the budget assigned to the software-
specific development efforts, and the top 46 contracts with the largest budgets were included in
this study. These 46 contracts covered roughly half of the total dollar scope for all development
programs in our dataset, and thus provided a reasonable sample size for our analysis. In addition,
35 contracts for smaller ACAT II and ACAT III software intensive Command and Control (C2) and
Automated Information System (AIS) programs were included in this analysis. This resulted in the
study capturing 81 total contracts valued at $17.9B in software development cost over the past
10 years (2008-2018). This study did not attempt to qualify or quantify the reasons for cost and
schedule growth, recognizing that growth is not always indicative of poor performance by the
program and/or contractor.

SWAP Study Final Release, 3 May 2019 S172

Figure G.7. Results of contract selection process.

The 81 total contracts included in this analysis covered the portfolio of DoD programs, including
software intensive C2 and AIS programs as well as aircraft, radars, land vehicles, and missile
weapon systems, as shown in Figure 8.

Figure G.8. Contracts analyzed by weapon system type.

Large Software Cost Growth

The analysis of IPMR data found that on average, the contracts experienced 138% cost growth.
The total combined value of the software development budgets within these contracts was $7.6B
at the time of initial reporting. By the time these contracts reported the latest (or in some cases,
final) performance baseline, the software development budget total grew by $10.4B. Based on
the analysis completed, significant software development cost growth was experienced across all
platform and program types, resulting in a second observation: In general, the DoD struggles to

SWAP Study Final Release, 3 May 2019 S173

minimize software development cost growth across the complete portfolio of projects. Figure 9
provides a summary of the 81 contracts evaluated, organized by project and by platform type.
Note that the cost growth of “C2 Program A05” was truncated in the figure as it was an outlier in
the analysis.

Figure G.9. Contract software development cost growth by program and by platform.

The study team used information provided by SARs and other relevant acquisition documentation
to calculate project schedule growth. Figure 10 illustrates both dimensions of cost and schedule
performance and identifies programs for which actual performance exceeds more than twice the
baseline cost and schedule. Two programs, “AIS Program A01” and “C2 Program A02,”
experienced cost or schedule growth so extreme that the bounds of the diagram axis plots were
exceeded. This figure also supports the second observation that recent software development
programs experience significant cost growth. The DIB SW Commandment 3 addresses cost
growth by advocating that software budgets be planned upfront to support the full life cycle versus
the current funding life cycle, defined around Planning, Programming, Budgeting, and Execution
(PPB&E).

SWAP Study Final Release, 3 May 2019 S174

Figure G.10. Software development cost growth vs. program schedule growth

Long Planned Durations and Frequent Re-baselining

The third study observation results from a deeper look into programs with high cost growth. This
research found that in numerous instances, program baselines shifted (re-baselined) during the
contract period of performance. The contracts with what appear to be significant “re-rebaselining”
(i.e., multiple recurring increases to the expected cost) were analyzed in further detail.

SAR program milestones and available open source data were evaluated to provide a scale of
time and functionality. It is observed that the software development effort crosses the same
percent complete, as defined by the Earned Value Management (EVM) metric as the ratio of
Budgeted Cost of Work Performed (BCWP) to Budget at Completion (BAC), multiple times. This
represents an incremental method of adding cost, which is presumably associated with the
addition of technical scope and requirements, which can result in a doubling or tripling of the total
original budgeted value of the software development effort.

Figure 11 provides an example of this behavior, showing the “C2 Program A01” program effort
that appears to re-baseline several times. The software development effort crosses the same
percent complete point multiple times.

DIB Software Commandment 2 provides the recommendation that software development should
begin small, be iterative and build on success; otherwise, be terminated quickly. DoD programs
that take this approach are likely to see an improvement in performance once scope and
requirements can be delimited through successful iteration. The behavior demonstrated in Figure
11 seems to indicate that to some extent, at least some programs are already behaving in an
iterative way that better suits the technical work of software evolution. Unfortunately, our reporting
mechanisms are not suited to reflect this reality, and in fact cannot differentiate a reasonable
approach to incremental development from problematic cost or schedule growth. Looking just at

SWAP Study Final Release, 3 May 2019 S175

the top-line numbers, these instances could be interpreted as excessive cost growth on the
program, representing a problem from the Department’s point of view since the predictability of
performance against cost and schedule baselines are normally taken as indicators of success.
What this scenario seems to point to is a need to improve our metrics collection to better reflect
the underlying technical reality of software, where good performance often leads to a demand for
new capabilities and new scope, as well as better educating our decision makers about how to
interpret the results.

Thus this example provides more information about associated reporting issues tied to
observation 5, that budgets should be contracted to support the full, iterative life cycle of the
software being procured with amounts definitized proportionally to the criticality and utility of the
software.

Figure G.11. C2 Program A01 performance measurement re-baselining.

Agile Software Development Can Improve Program Performance

This study researched the performance of agile development methods that are implemented in
existing programs. IPMRs do not explicitly state the type of development effort being used
(incremental, agile, etc.). However, an article published in the journal Defense Acquisition
provided an instance where agile development was applied and considered a success story.
Although this article did not name the program, we were able to identify the most likely candidate,
“Aircraft Program A05,” by matching the timeline presented in the article against the timeline of
contracts that we could see in the program data.

The IPMR data for this program are shown in Figure 12. The contract work completed using an
agile approach are shown in blue and represent a 21% cost reduction when compared to the
initial budgeted value. This is in contrast to the contracts that seem to adopt a waterfall

SWAP Study Final Release, 3 May 2019 S176

development methodology, i.e., contracts with planned long durations, which are shown in shades
of orange and represent a 129% cost growth compared to the initial budgeted cost.

This analysis supports the fourth study observation that agile development may reduce cost
growth compared to more traditional waterfall approaches. The DIB SW Commandment 2 also
advocates that agile approaches seen in commercial development result in faster deployment of
functionality and cost savings which we observe in this instance.

Though a comparison of cost is one facet of performance, more research is required to increase
the certainty that better overall performance and results were achieved with agile methods.

Figure G.12. Aircraft program A05: incremental vs. agile development efforts

Cost and Schedule Analysis Summary

In important ways, this analysis was typical of other efforts that aim to use Department data to
examine the performance of acquisition. Due to the limited nature of the data available, our best
analyses typically take months to create, with substantial time needed to find the data, to collect
them, and to compile them into a structured format from multiple siloed and restricted systems.

The observations taken from data analysis of DoD program cost and schedule performance
support the supposition that the current state of software acquisition is highly problematic and
unsustainable relative to affordability and functionality. The DIB SW Commandments 2, 3, and 4
provide recommended measures to contain growth and increase the opportunity for cost savings
by detaching software development from a hardware manufacturing industrial model and
integrating software development and operations to quickly provide functionality to users and
meet changing needs dictated by a dynamic global environment.

SWAP Study Final Release, 3 May 2019 S177

The preceding sections have described specific conclusions from the analyses our team
conducted. Equally important, however, are the types of analyses we were unable to conduct
given the data that were available.

A notable omission is that the Department is unable to address questions of how much software
it has. Not in terms of software size but in terms of an index of how many important software
systems have been acquired or are being sustained by the Department: There is no DoD or
Service framework for describing the types of software intensive systems, or any inventory/
catalogue of the software in use. As a result, it is challenging to comprehend the scope and
magnitude of the DoD software enterprise, and to design appropriate solutions for issues such as
infrastructure or workforce that can meet the magnitude of the problem. Although done at a
smaller scale, NASA’s software inventory is an example of such an inventory model that is used
to make strategic decisions for a federal agency.36

There is a large and growing body of work on software analytics, the automated or tool-assisted
analysis of data about software systems (usually collected automatically) in order to make
decisions. Conferences such as Mining Software Repositories37 and Automated Software
Engineering38 annually showcase the best of the new research in these areas, and these methods
are having a practical impact in commercial and government environments as well. A summary
of software analytic applications lists several important questions that can be explored in this way:
to name just a few, “using process data to predict overall project effort, using software process
models to learn effective project changes, … using execution traces to learn normal interface
usage patterns, … using bug databases to learn defect predictors that guide inspections teams

to where code is most likely to fail.”39 Without access to its own software data, DoD is missing the
opportunity to exploit another area of research that could provide practical benefit for improving
acquisition.

In a later section of this report (Appendix H), we provide the results of a small study that was
undertaken to demonstrate potential practical impacts that could be achieved if software data
access could be possible in the future.

36 NASA Engineering Handbook (https://swehb.nasa.gov/display/7150/SWE-006+-
+Agency+Software+Inventory#_tabs-6).
37 https://2018.msrconf.org/
38 http://ase-conferences.org/
39 T. Menzies and T. Zimmermann, “Software Analytics: So What?,” in IEEE Software, vol. 30, no. 4, pp.
31-37, July-Aug. 2013. DOI: 10.1109/MS.2013.86

https://swehb.nasa.gov/display/7150/SWE-006+-+Agency+Software+Inventory#_tabs-6
https://swehb.nasa.gov/display/7150/SWE-006+-+Agency+Software+Inventory#_tabs-6
https://2018.msrconf.org/
http://ase-conferences.org/

SWAP Study Final Release, 3 May 2019 S178

Appendix H: Replacing Augmenting CAPE with AI/ML

Linda Harrell, John Piorkoski, Phil Koshute, Erhan Guven, Marc Johnson (JHU/APL)
Vladimir Filkov, Farhana Sarkar, Guowei Yang, Anze Wang (UC Davis)

Steven Lee (Rotunda Solutions)

H.1 Introduction

The Defense Innovation Board (DIB) Software Acquisition and Practices (SWAP) study chartered
an exploratory study to explore the use of modern tools in data analytics and Machine Learning
(ML) to provide insights into cost, time, and quality of Department of Defense (DoD) software
projects. The data analytics and ML effort were performed by a team from academia (University
of California Davis (UC-Davis)), a university affiliated research center (The Johns Hopkins
University Applied Physics Laboratory (JHU/APL)) and industry (Rotunda Solutions). Since a
suitable DoD data set was not available, the three teams leveraged existing data sets that were
readily available to perform ML experiments and quickly get results.

ML models were created to predict the cost, time, and other aspects of software projects and gain
a deeper understanding of the potential impact of project characteristics on overall project budget
and effort. The models were trained with different data sets and were constructed to predict
different performance metrics throughout the software development life cycle.

The JHU/APL team developed ML models to predict software project duration and effort using
the commercially available International Software Benchmarking Standards Group (ISBSG)
Development and Enhancement (D&E) Repository of completed software projects. The UC-Davis
team developed ML models to forecast software project duration, effort, and popularity using the
publicly available GitHub repository of open-source projects. Finally, Rotunda Solutions created
a defect density ML model to capture the code complexity and predict potential risk of code
modules using a publicly available NASA dataset.

Additionally, the Rotunda Solutions team identified a number of opportunities for harnessing ML
and Artificial Intelligence (AI) to improve the software acquisition process during different phases
of the procurement cycle. This research effort is referred to as the Opportunities for Analytic
Intervention. Rotunda Solutions also started development of a conceptual mock-up to explore
some of these opportunities.

Overall, the three ML model development approaches demonstrated promising results aimed at
improving predictions of software cost, time, and quality during different life-cycle phases.

● The JHU/APL team identified features (software metrics) that can support predictions of
duration and effort at the project onset and shows that ML models have very good
accuracy even with as few as 5 to 15 important features, most of which can be easily
collected. It also shows how the prediction accuracy increases slightly by also including
the effort expended in different life-cycle phases (e.g., planning, specification, design,
build, test, and implementation). Since this analysis addresses the whole software life
cycle, the APL effort is referred to as the Software Life-Cycle Prediction Model.

SWAP Study Final Release, 3 May 2019 S179

● The UC-Davis team shows how monitoring of software development activities over time
via automated tools that capture metrics (such as the number of lines of code, the number
of commits, and team size) can support accurate forecasts of duration, software effort
(SWE), and software popularity. Additionally, the UC-Davis analysis showed that the ML
models could obtain very good forecasting accuracy only 6 months after code
development has started. Hence the UC-Davis ML model can serve as an early warning
indicator. Since this analysis leveraged data obtained during software development
activities to forecast future outcomes, it is referred to as the Software Development
Forecasting Model.

● The Rotunda Solutions defect density model automatically processed code files and
output code complexity metrics to aid efficient resource allocations and risk mitigation.

Interestingly, despite the differences in the approaches taken by JHU/APL and UC-Davis, the
teams shared similar conclusions. For instance, both teams identified the team size and the
project timing as being important features for the predictions.

Section H.2 of this document describes the methodology applied to the APL Software Life-Cycle
Prediction Model and the UC-Davis Software Development Forecasting Model. Section H.3
summarizes the major findings of all three analyses. Section H.4 offers implications of these study
results for DoD programs.

H.2 Methodology

The approaches taken for the APL Software Life-Cycle Prediction Model and the UC-Davis
Software Development Forecasting Model were complementary. Table H.1 summarizes key
aspects of the two approaches. These aspects include:

ML Techniques. Both studies leveraged readily available commercial or open- source ML
techniques. This enabled the teams to meet the task’s quick reaction turn-around timeline and
also ensures that DoD government personnel and contractors can apply a similar approach when
they develop their own prediction models for software projects. Although the teams developed
several types of ML models, this report focuses on those with the best results: the APL Random
Forest (RF) and the UC-Davis Neural Network (NN) models.

Data Sets. The APL team leveraged the 2018 International Software Benchmarking Standards
Group (ISBSG) Development and Enhancement (D&E) Repository of completed software
projects. This diverse database contains thousands of software projects that are described by a
rich set of features that span the whole software life cycle, but most of these projects have less
than one year in duration or less than two years of effort. The UC-Davis team mined the GitHub
collaborative project development and repository site, which contains historical trace data
captured from millions of open-source software projects. The resulting database includes
hundreds of thousands projects of various sizes. Its feature set is not as rich as in the ISBSG
database, but it automatically tracks development metrics including commits, discussions, and
other activities.

SWAP Study Final Release, 3 May 2019 S180

Target Variables. The APL team focuses on predicting software project duration and effort, two
of the three metrics of greatest interest to the DIB. On the other hand, the UC-Davis team aims
to predict the project duration (via its proxy months committed), the number of software commits
(which is an incomplete proxy for software effort), and the number of stars (which is an indicator
of the popularity of a project in GitHub).

Project Tiers and Boundaries. Large differences between proposal estimates and actual
outcomes for software development duration and effort cause the biggest challenges for DoD;
small deviations are much more manageable. To reflect this perspective, both studies gathered
their target variables into discrete tiers with boundaries shown in Figure H.1.

Performance Metrics. Both studies assessed the performance of their models with confusion
matrices (which shows the distribution of predictions in terms of predicted and actual tiers) and
overall accuracy.

Table H.1. Key aspects of APL and UC-Davis studies

Parameter APL Software Life-Cycle
Prediction Model

UC-Davis Software Development
Forecast Model

Data Set 2018 ISBSG D&E Repository 2018 GitHub Repository

Number of Projects
(after preprocessing) 2,818 Approx. 127,000

Number of Features
(after reduction) 176 36

Target
Variables for
…

Duration Project Duration Months Committed

Effort Effort Total Number of Commits

Popularity N/A Number of Stars

ML Techniques Off-the-shelf
(NB, SVM, RF)

Off-the-shelf
(MR, NB, RF, NN)

Results:
Overall Accuracy;

Confusion Matrices

Overall accuracy: Yes

Confusion Matrix: 4 tier

Overall accuracy: Yes

Confusion Matrix: 5 tier

Prediction Snapshots
Early concept development and
procurement;

Software development in process

After 6 months of software
development ;

Most recent software development

Feature Reduction Yes Yes

Definitions: NB = Naive Bayes, SVM = Support Vector Machines, MR = Multivariate Regression, NN = Neural Networks

SWAP Study Final Release, 3 May 2019 S181

Figure H.1. Classification tier boundaries.

Prediction/Forecasting Snapshots. APL made predictions at two project phases (snapshots). The
first snapshot is at onset, which includes features that are available or can be estimated during
the concept, proposal, and procurement stage. The second is after software development has
been underway; it can include additional features as they become available. UC-Davis made
predictions at three snapshots, corresponding to the time elapsed for each project: 6 months from
first commit, 12 months from first commit, and most recent snapshot (1/1/2018). The most recent
snapshot is taken to be the actual outcome (even if the project is still under development). For
simplicity, the results with the 12-month snapshot are not discussed herein.

Feature Importance Ranking and Reduction. The APL RF and UC-Davis NN models both
determined feature importance by evaluating the importance of each feature to the overall
accuracy prediction and developed corresponding models with only the top ranked features.

Pre-Processing and Feature Selection. The pre-processing actions taken by the APL and UC-
Davis are discussed in separate reports.

Project Context (Cluster) Creation. To fine-tune their predictive models, UC-Davis used an
Autoencoder NN to group projects into four similarity clusters (i.e., contexts). A separate model
NN was trained for each cluster. This technique allows for greater accuracy when project context
is known early on, by, for example, tracking project metrics from the start.

H.3 Key Results and Findings

APL Software Life-Cycle Prediction Model

Table H.2 shows the performance of the APL models that predict software project duration and
effort with all features included. Even with minimal data cleaning, model tweaking, or sensitivity
studies, and using a very sparse and unevenly distributed data set, the ML models predict a
project’s size tier with an overall accuracy ranging from 57% to 74%. These are impressive results
for a quick-turnaround exploratory analysis.

As expected, the prediction estimates once development is underway are better than the
predictions at program onset. This is because additional features, such as the effort expended in

SWAP Study Final Release, 3 May 2019 S182

various life-cycle phases, help to improve predictions. However, with the features included in this
analysis, the improvement was slight.

Even when the ML model does not correctly predict the size of the software project, the prediction
is most often in adjacent tiers rather than significantly further away. This is evident in the confusion
matrix in Table H.3 and the additional confusion matrices provided in separate reports. This is
important because it indicates that incorrect predictions still tend to be fairly close (e.g., an extra-
large project predicted as large or vice versa).

Table H.2. Performance summary for APL prediction models (with all features)

Model Overall Accuracy

Predicting Duration at Project Onset 57%

Predicting Duration after the Project is
Underway 58%

Predicting Effort at Project Onset 68%

Predicting Effort after the Project is Underway 74%

Table H.3. APL confusion matrix for predicting effort as project is underway (with all features)

Accuracy values are shown as a percent of all
projects of a given class

Predicted Class

S M L XL

Actual Class

Small (S) 80 18 2 0.1

Medium (M) 23 59 18 0.6

Large (L) 2 20 73 5

Extra Large (XL) 0.1 0.8 14 85

Table H.4 identifies the most important features that influence the predictions. Naturally, the
ranking of importance for each feature varies slightly for the predictions of duration and effort and
for the two different phases (at project onset versus while the software development is underway),
but the discrepancies are generally slight. Encouragingly, the features in this table are generally
easy to obtain or estimate: function point standards, team size, software type, project
implementation date, scope, programming language. The only feature category that is time
consuming to gather is the functional size estimate. Each of the features in these tables is further
described in the APL report.

SWAP Study Final Release, 3 May 2019 S183

Table H.4 Most important features for ML accuracy predictions

Category of Feature Most Important Features Project Phase

Software Size Functional Size, Relative Size, Adjusted Function
Points Project Onset

Standards for Function

Point Estimates
Function Point Standards, Count Approach Project Onset

Team Maximum Team Size, Team Size Project Onset

Type of Software Industry Sector, Organization Type, Application
Type, Business Area Project Onset

Timing Year of Project, Implementation Date Project Onset

Scope Project Activities, Development Type Project Onset

Programming
Language

Primary Programming Language,

Language Type, Development Platform
Project Onset

Incremental Effort

Effort in the Planning Phase, Effort in Specify
Phase, Effort in Design Phase, Effort in Build
Phase, Effort for Implementation, Effort in Test
Phase

When the Project is
Underway

Cost Total Project Cost When the Project is
Underway

Figure H.2 depicts the accuracy prediction with small subsets of the most important features, and
shows how the accuracy increases as additional features are added. This figure shows that
although the database includes 176 features, very good predictions can be obtained using only
as few as 5 to 15 features. These features are captured in Table H.4.

SWAP Study Final Release, 3 May 2019 S184

Figure H.2. Accuracy of APL’s software project duration and software effort (with reduced,
prioritized feature set).

The APL Software Life-Cycle Prediction model results clearly show that ML models can quickly
be developed and trained using only a relatively small number of projects, a very small number
of features, and a large amount of missing data. Furthermore, the resulting predictions for a
software project’s duration and total effort can be reasonably accurate at the project onset, and
can then improve slightly over time by tracking the effort that is expended over the life cycle. Only
about 5 to 15 features are required to achieve reasonable predictions. The most important
features for the predictions were identified; most of them are easy to obtain or estimate.

UC-Davis Software Development Forecasting Model

UC-Davis developed models that predict project duration, number of commits, and popularity
using all available historical data of completed projects in the January 2018 snapshot, starting
from the first commit of software. Table 3.4 shows the best-case overall prediction accuracies that
can be obtained with these models and all of this data. The best-case overall accuracy of the
prediction estimate for project duration is 84% and the best-case overall accuracy of the prediction
estimate for the number of commits is 72%. Predictions for popularity were less accurate. These
results indicate that the features in the GitHub database will be very useful for predicting software
project duration and to a lesser extent the predictions for the number of commits. It appears that
additional features will be necessary to improve the predictions for software popularity.

Additionally, Table H.5 also shows that the best-case overall accuracy results for these models
vary for different context clusters of similar projects. For instance, the accuracy values for each
target variable increase within certain clusters; accuracy is greater in Cluster 1 by 16% for project
duration and by 24% for number of commits and in Cluster 4 by 13% for popularity. These
increases suggest that clustering projects based on similar context can increase the best-case
prediction accuracy and that different models may be necessary to best predict different project
contexts. The descriptions of these different clusters are not available at this time, but it would be

SWAP Study Final Release, 3 May 2019 S185

valuable to investigate this further in order to understand the project characteristics that
distinguish the clusters.

Table H.6 shows the best-case overall accuracy of the UC-Davis models that use only the 9 most
important features from the full project lifetime. These results are very close to those of the models
that use all available features, indicating that the reduced feature set is sufficient for accurate
predictions.

Table H.5. Full lifetime (best-case) prediction accuracy

Target Variable All Projects Cluster 1 Cluster 2 Cluster 3 Cluster 4

Number of Projects 126,799 21,462 31,918 55,065 18,354

Project Duration
(months committed) 84% 99.5% 83% 80% 78%

Number of Commits 72% 96% 70% 62% 69%

Popularity (number of
stars) 49% 46% 48% 42% 62%

Table H.6. Full lifetime (best-case) prediction accuracy with reduced feature set

Target Variable All Features
(All Clusters)

9 Most Important Features
(All Clusters)

Project Duration (months committed) 84% 84%

Number of Commits 72% 74%

Popularity (number of stars) 49% 48%

Table H.7 shows the accuracy results of the forecasting models, which predict the target variable
in the final snapshot using features from a snapshot taken 6 months after project starts. These
results are averaged over each of the 4 clusters (i.e., include 126,799 projects). These forecasting
results show that data from only the first 6 months into a project can predict future outcomes,
reaching accuracies of approximately 50% for both project duration and number of commits.

Table H.8 identifies the most important features that influenced the UC-Davis predictions and
forecasting. This table shows that features related to teams and commit activity are the most
important for the UC-Davis models.

SWAP Study Final Release, 3 May 2019 S186

Table H.7. Forecasting accuracy (averaged over all clusters)

Target Variable
Prediction of target variable at
last snapshot given 6 month

snapshot
Prediction of target variable at

last snapshot given all data

Project Duration

(months committed)
53%

84%

Number of Commits 50% 72%

Popularity (number of stars) 41% 49%

Table H.8. Most important features for the UC-Davis predictions and forecasting

Feature Category Most Important Features

Commit Activity Data First Commit Date, Months Committed

Team Member Data
Team Size, Number of Commenters, Number of Pull Request Mergers,
Average Months Active, Standard Deviation (SD) Months Active, Average
Commits per Month, SD Commits per Month

In summary, the UC-Davis analysis shows excellent results for being able to forecast project
duration and the number of commits only 6 months into a project. Only 9 features are required to
achieve these forecasts. The most important features for the predictions were identified; all of
them easily obtained with automation tools that track software development activities.
Additionally, UC-Davis uncovered clusters of projects that if better understood could lead to
improved models and accuracy predictions.

Rotunda Solutions Investigation of Opportunities for Analytic Intervention

The Rotunda Solutions effort focused on identifying strategic opportunities to leverage ML and AI
at key points in the overall DoD procurement process. It extended academic research and state-
of-the-art quality management principles to identify opportunities to improve the likelihood of
successful software development outcomes. It also developed initial conceptual mock-ups to
explore potential applications, including a defect prediction platform.

Rotunda Solutions adopted a basic stage-gate model to represent the general structure and
stages of a DoD procurement and project development effort. Multiple opportunities are identified
in each stage where analytics, ML, and other modern techniques can assist project managers.
First, analytics can provide metrics and insights to support the project manager’s yes/no/hold
decision for whether the project should move to the next development stage. Second, analytics
and ML can facilitate the search and interpretation of DoD procurement and development data

SWAP Study Final Release, 3 May 2019 S187

sets so that decision makers have better access to historical data. Third, analytics can be run on
this historical data to provide insights that can inform future projects. The application of modern
techniques within a basic stage-gate model for a typical DoD procurement and development
project can be envisioned as follows.

Stage 1: Idea Generation/Need Analysis. Analyze the internal unstructured documents from the
program office and communications between suppliers and procurement officials. Then apply
problem identification analytics to define the problem to be solved, considering the following 5
major groups/factors: need spotting, solution spotting, mental invention, market research, and
trend. The literature shows a clear trend in savings of time and resources during the development
process by maximizing the effectiveness of the idea generation stage.

Stages 2 and 3: Proposal Development and Response. Analyze internal unstructured documents
from the program office and communications as they relate to proposal development and
response. Use qualitative techniques such as focus groups, in-depth interviews, and surveys to
determine factors associated with development success and failure. Additionally, use natural
language processing (NLP) techniques to prepare the documents for further analysis. Both
methods can identify key mechanisms and characteristics of software development success.

Stage 4: Contract and Award. Identify keywords through analysis of prior software contracts. Use
NLP and topic extraction on legal documents surrounding the final selection of the supplier,
contract vehicles, set-asides, and all stipulations to determine content. This can increase the ease
of detecting associations between numerous demographic and supplier characteristics and
software development performance. It also provides the ability to build a grading system and
general profile of contractors and their performance on projects.

Stage 5: Software Development. Gather representative data regarding project management
metrics, code base, and development metrics, and compile a list of metrics that can help identify
the likelihood of success of a DoD software development project. This helps DoD in two ways:
first by identifying projects that are likely to succeed or fail in each stage; and second by informing
cost and time estimates for future software acquisition projects. Alternatively, analyze code to
inform the development of ML tools to assist project managers and developers understand the
state of their code. Potential benefits of this analysis include tools that can rapidly identify errors
and increase efficiency for automation, audits, process checkpoints, and standardization.

Stage 6: Implementation. Harness available information on users, development, delivery
personnel, and performance metrics of the software system. Measure the efficacy of the deployed
or implemented software systems through metrics such as dependability, system performance,
extensibility, and cross-platform functionality. This provides a postmortem analysis of the
efficiency and effectiveness of the software and the development process, allowing DoD to learn
from past experience and increase the likelihood of future development success.

Conceptual Mock-Ups

Rotunda Solutions aims to help DoD in four ways: (1) understand the potential impact of variables,
decisions, and project characteristics on project budget and effort, based on historical data of

SWAP Study Final Release, 3 May 2019 S188

similar projects; (2) make data-informed project decisions pertaining to the adjustment of project
structure, methods, and other details; (3) create and explore what-if scenarios to promote better
planning; and (4) encourage transparency and traceability of factors and decision-points affecting
project performance. To this end, a number of concepts offer potential for further development
and exploration. For instance, the concept of an “intelligent” burn-down chart is especially
intriguing. Given sufficient sprint data and historical trend data, effort estimation tools and ML
algorithms can be leveraged to make real-time predictions and issue alerts when estimates of
team effort needs a closer review. Also, a defect prediction algorithm may be able to support risk
mitigation activities and improve resource allocations.

Focus Area: Defect Prediction Platform

Software defect prevention is an essential part of the quality improvement process; timely
identification of defects is important for efficient resource allocation, increased productivity, and
risk mitigation, yet complete testing of an entire system is generally not feasible due to budget
and time constraints. Studies show that the majority of software bugs are often contained within
a small number of modules. To more rapidly identify these modules, Rotunda Solutions developed
a system to automatically process code files and output code complexity metrics. They built off
extensive industry research and tested representative NASA software modules using NN, SVM,
Gaussian mixtures, and ensembles of ML techniques. The NN model performed best and was
selected for production.

The NN model consists of 8 hidden layers, each layer becoming smaller until converging on a
single probability to represent the existence of defects in the file. This model learns to assign
importance weights to each of the 17 features and to combine these features in non-linear ways
to identify any potential defects. The NN can then be used to give a probability of defects for future
files. This could help the management team in three ways: (1) to recognize the likeliest modules
to have defects and allocate corrective resources effectively; (2) to provide an overview of the
riskiest code modules to identify opportunities to re-architect the application; and (3) to understand
the risk of deployment in production by an automated code complexity review.

Caveats and Limitations

It is important to note that there are significant differences between the software repositories used
in this work and important classes of software acquired by DoD. For example, embedded software
used in DoD weapons platforms is typically marked by high complexity, with low tolerance for
reliability, availability, safety, and security issues. Although the testbeds on which the ML
approaches were applied do contain some NASA software, only a small subset at best of the
systems providing data are expected to have similar characteristics. As a result, it is important to
view these results as showing a potential method that would be applicable to DoD programs and
could learn characteristics of interest within that environment. While the method may be of
interest, the specific results summarized may not directly carry over to some types of software
present in the DoD environment.

SWAP Study Final Release, 3 May 2019 S189

Conclusions

The Rotunda Solutions exploration outlined the potential benefits of harnessing ML/AI throughout
the DoD software acquisition life cycle. These benefits include increased accuracy of budget
predictions, comprehensive planning, mitigation of expensive defects, and transparency. Rotunda
Solutions also identified many opportunities and applications that may improve DoD software
development and estimation practices.

H.4 Implications of the Study Results for DoD

This ML study demonstrated promising results by creating models with publicly available software
project data. It uncovered a promising approach (the APL Life-Cycle Prediction Model) that can
be used to develop good predictions of software duration and effort in the early stages of software
procurement and development. The study also uncovered another approach (the UC-Davis
Forecasting Model) that can further improve project estimates once software development has
been underway for 6 months or more. Finally, the Rotunda Solutions defect density model can
highlight modules requiring additional resources and risk mitigation efforts.

The generalizability of these models to DoD software projects requires validation. For instance, a
pilot study could be conducted with a small subset of DoD projects. Ultimately, strategies can be
developed to enable DoD leadership to effectively leverage ML models.

One strategy could entail a strong centralized mandate for DoD software development teams to
provide project data to DoD oversight personnel for evaluation with the APL and UC-Davis
models.

A second, more streamlined and evolutionary strategy is to provide these models as tools for DoD
software development teams to use as part of best practices to guide their development plans.
This strategy would alleviate the exchange of data and would allow a more collaborative
community effort to refine the models and resulting software development performance over time.

SWAP Study Final Release, 3 May 2019 S190

Appendix I: Acronyms and Glossary of Terms

Acronyms

● ACAT - acquisition category
● ACTD - advanced concept technology demonstration
● AI - artificial intelligence
● ATO - authority (or authorization) to operate
● CAPE - Cost Assessment and Performance Evaluation
● CFR - Code of Federal Regulations
● CI/CD - continuous integration/continuous delivery
● CIO - Chief Information Officer
● COCOM - combatant command
● COTS - commercial off-the-shelf
● DAU - Defense Acquisition University
● DDS - Defense Digital Service
● DFARS - Defense Federal Acquisition Regulation Supplement
● DIB - Defense Innovation Board
● DoD - Department of Defense
● DoDI - Department of Defense Instruction
● DoDIG - Department of Defense Office of Inspector General
● DOT&E - Director, Operational Test & Evaluation
● DSB - Defense Science Board
● DSS - Defense Security Service
● FACA - Federal Advisory Committee Act
● FAR - Federal Acquisition Regulation
● FARs - Federal Acquisition Regulations
● FFRDC - Federally-Funded Research and Development Center
● FFRDCs - Federally Funded Research and Development Centers
● FM - financial management
● FTEs - full-time equivalents
● GAO - General Accounting Office
● GOTS - government off-the-shelf
● GPU - graphics processing unit
● IT - information technology
● JCIDS - Joint Capabilities Integration and Development System
● JIDO - Joint Improvised-Threat Defeat Organization
● KO - contracting officer
● ML - machine learning
● MOS - military occupational specialty
● MVP - minimum viable product
● O&M - operations and maintenance
● OODA - Observe, Orient, Decide, and Act
● OSD - Office of the Secretary of Defense
● OT&E - Operation, Test & Evaluation

SWAP Study Final Release, 3 May 2019 S191

● OTA - Other Transaction Authority
● PAO - program acquisition office
● PM - program management
● PMO - program management office
● PPB&E - Planning, Programing, Budgeting and Execution
● R&D - research and development
● RDT&E - research, development, test, and evaluation
● RFP - request for proposals
● SAE - Service Acquisition Executive
● SE - systems engineering
● SWAP - software acquisition and practices 9study)
● T&E - Testing & Evaluation
● USC - United States Code
● USD(A&S) - Under Secretary for Defense (Acquisition and Sustainment)
● USD(C) - Under Secretary of Defense (Comptroller)
● USD(R&E) - Under Secretary of Defense (Research and Engineering)

Glossary

In this subsection we provide a short glossary of some of the terms that we use throughout the
report. For each term we provide a short definition of that term, including references if it is a term
used elsewhere, and then provide some context and motivation for the use of the term in this
report.

Agile development [DSB00]. Agile development, also called “iterative” development, begins with
the creation of a software factory. Development and testing sprints—a set period of time during
which specific work is completed—allow a team to do rapid iterations of development, obtain user
feedback, and adjust goals for the next increment. This framework allows for continuous
development throughout the life of the product.

ATO (authorization to operate). Formal declaration by a Designated Approving Authority (DAA)
that authorizes operation of an IT system and explicitly accepts the risk to agency operations.
Obtaining an ATO is required under the Federal Information Security Management Act (FISMA)
of 2002 and regulated by Federal Government and DoD guidance that specifies the minimum
security requirements necessary to protect Information Technology (IT) assets.

Business systems [Sec 1.2]. Essentially the same as enterprise systems, but operating at a
slightly smaller scale (e.g., for one of the Services). Like enterprise systems, they are
interoperable, expandable, reliable, and probably based on commercial offerings. Similar
functions may be customized differently by individual Services, though they should all interoperate
with DoD-wide enterprise systems. Depending on their use, these systems may run in the cloud,
in local data centers, or on desktop computers. Examples include software development
environments and Service-specific HR, financial, and logistics systems.

CI/CD (continuous integration/continuous delivery). Continuous integration (CI) is the
practice of merging all software developer working copies of code to a shared master

SWAP Study Final Release, 3 May 2019 S192

development branch on a continuous basis. Continuous delivery is a software engineering
approach in which teams produce software in short cycles, ensuring that the software can be
reliably released at any time. The combination of continuous integration and continuous delivery
is a common feature of DevOps (and DevSecOps) development environments.

Cloud computing [Sec 1.2]. Computing that is typically provided in a manner such that the
specific location of the compute hardware is not relevant (and may change over time). These
systems will typically be running on commercial hardware and using commercial operating
systems, and the applications running on them will run even as the underlying hardware changes.
The important point here is that the hardware and operating systems are generally transparent to
the application and its user.

Client/server computing [Sec 1.2]. Computing provided by a combination of hardware resources
available in a computing center (servers) as well as local computing (client). These systems will
usually be running on commercial hardware and using commercial operating systems.

Combat systems [Sec 1.2]. Software applications that are unique to the national security space
and used as part of combat operations. Combat systems may require some level of customization
that may be unique to DoD, not the least of which will be specialized cybersecurity considerations
to enable them to continue to function during an adversarial attack. (Note that since modern DoD
enterprise and business systems depend on software, cyber attacks to disrupt operations have
the potential to be just as crippling as those aimed at combat systems.)

Desktop/laptop/tablet computing [Sec 1.2]. Computing that is carried out on a single system,
often by interacting with data sources across a network. These systems will usually be running
on commercial hardware and using commercial operating systems.

DevSecOps. “DevOps” represents the integration of
software development and software operations, along
with the tools and culture that support rapid prototyping
and deployment, early engagement with the end user,
and automation and monitoring of software, and
psychological safety (e.g., blameless reviews).
“DevSecOps” is a more recent term that reflects the
importance of integrating security into the DevOps
cycle (and not bolting on security at the end). DevOps
development is closely related to agile development
and the two are often used interchangeably. The term
DevSecOps places more focus on security as a critical
element. More information: https://tech.gsa.gov/guides/
understanding_differences_agile_devsecops/.

DevSecOps techniques should be adopted by DoD, with appropriate tuning of approaches used
by the Agile/DevOps community for mission-critical, national security applications. Open source
software should be used when possible to speed development and deployment, and leverage the
work of others. Waterfall development approaches (e.g., DOD-STD-2167A) should be banned

Figure I.1. Continuous integration of
development, security, and
deployment (DevSecOps). [Adapted
from an image by Kharnagy, licensed
under CC BY-SA 4.0]

https://tech.gsa.gov/guides/
https://tech.gsa.gov/guides/
https://commons.wikimedia.org/wiki/File:Devops-toolchain.svg
https://creativecommons.org/licenses/by-sa/4.0/

SWAP Study Final Release, 3 May 2019 S193

and replaced with true, commercial agile processes. Thinking of software “procurement” and
“sustainment” separately is also a problem: software is never “finished” but must be constantly
updated to maintain capability, address ongoing security issues and potentially add or increase
performance.

Moving to a DevSecOps software development approach will enable DoD to move from a specify,
develop, acquire, sustain mentality to a more modern (and more useful) create, deploy, scale,
optimize mentality. Enabling rapid iteration will create a system in which the US can update
software at least as fast as our adversaries can change tactics, allowing us to get inside their
OODA loop.

Digital Infrastructure. Enterprise-scale computing hardware and software platforms that enable
rapid creation and fielding of software. Critical elements include:

● Scalable compute: elastic mechanisms to provide any developer with a powerful
computing environment that can easily scale with the needs of an individual programmer,
a product development team, or an entire organization enterprise.

● Containerization: sandbox environments that “package up” an application or
microservices with all of the operating system services required for executing the
application and allowing that application to run in a virtualized segmented environment.

● Continuous integration/continuous delivery (CI/CD) pipeline: platform for automated
testing, security, and deployment of software, including licenses access for security tools
and a centralized artifacts repository of containers with tools, databases, and operating
system images.

● Automated configuration, updating, distribution, and recovery management: automated
processes that use machine-readable definition files (stored in the same source code
repository as your software source code) to manage and provision environments,
containers, virtual machines, load balancing, networking, access rules, and other
components.

● Federated identity management and authentication: common identity management for
accessing information across multiple systems and allows rapid and accurate auditing of
code.

● Firewall configuration and network access control lists: forces information transfer only
through intentional interfaces to reduce the attack surface and make system servers more
resilient against penetration.

● Common information assurance (IA) profiles: Common IA profiles integrated into the
development environment and part of the development system architecture are less likely
to have bugs than customized and add-on solutions.

SWAP Study Final Release, 3 May 2019 S194

● Modeling and simulation capability: The use of high fidelity simulations and digital models,
enables software developers to develop and validate software more quickly with greater
reliability (see also digital twin).

Currently, DoD programs each develop their own development and test environments, which
requires redundant definition and provisioning, replicated assurance, including cyber, and
extended lead times to deploy capability. Digital infrastructure, common in commercial IT, is
critical to enable rapid deployment at the speed (and scale) of relevance. The Services and
defense contractors will need to build on a common set of tools (instead of inventing their own)
without just requiring that everyone use one DoD-wide (or even service-wide) platform.

Digital twin. A digital twin is a digital synthetic representation of a system or capability. Digital
twins are useful in concept development, designing, developing, testing, and validation of
software. The use of high fidelity simulations and digital models enables software developers to
develop and validate software more quickly with greater reliability. In the future, as we leverage
the use of Machine Learning (ML) and Artificial Intelligence (AI) in software design, development,
and test, the ability to leverage simulation and modeling will be critical. For example, today, in the
commercial world where self-driving cars are being pioneered, sensors are used to collect data
on millions of miles of roads. Before software updates are pushed to the autonomous driving cars
and before the first mile is every driven on real roads, the software “drives” those millions of miles
through simulation. It is important that the Department and our defense industrial base develop
and support similar capabilities to that of commercial industry.

Embedded computing [Sec 1.2]. Computing that is tied to a physical, often-customized
hardware platform and that has special features that requires careful integration between software
and hardware.

Enduring capability. Refers to a class of mission software needs that will persist for the
foreseeable future and should be budgeted and managed as an ongoing level of effort with a
portfolio management approach to balance—in real time—maintenance, upgrades and major new
functionality. An example is the acquisition, processing and distribution of data and information
from overhead assets which, when separated from the sensor and satellite programs to which
each iteration is traditionally attached, is an area of investment we will always be making.

Throughout this report we make reference to the modern view of software as a continuously,
incrementally delivered capability and we use that definition to drive many of the
recommendations we propose, especially around the use of DevSecOps. This view is
characterized by rapid user feedback loops and continuous deployment to deal with that feedback
and with such “maintenance” functions as cyber protection, operating system upgrades, etc. This
is the overall vision we espouse for the acquisition and delivery of most types of software—think
about the software to deliver spare parts management for a fighter fleet, the software to manage
the movement of service personnel and their families, or the software to provide tanker scheduling
for a combat air fleet in an AOR.

We believe it is also important to look at certain kinds of software that will need to be delivered
against a mission need that will persist for long enough into the future that we should think about

SWAP Study Final Release, 3 May 2019 S195

it as an enduring capability need. A good example of an enduring capability is the processing,
exploitation, and distribution (PED) software that ingests data from multi-domain overhead
assess, processes that data into a series of information products and makes those products
available to a wide array of global users. Satellites will change, sensors will change, and the kinds
of analyses will change, but the underlying software to process this chain will endure.

Historically PED has been mapped to new or upgraded satellite launches—new satellite, new
ground station—and as such are mapped to long cycle times, large, non-incremental programs
and oversized budgets broken into the traditional buckets of R&E, acquisition and maintenance.
A different model would be to recognize the enduring need for PED capability, fund as a stable
ongoing effort, manage the capability through an integrated program team/PEO responsible in
real time for the portfolio trades between fixes, upgrades and new capabilities. The core is to
separate software from the hardware platforms that provide it data and from the downstream
systems that consume the output of the software, recognize that this software need will persist
for the foreseeable future, and fund and manage the program in this fashion.

Enterprise systems [Sec 1.2]. Very large-scale software systems intended to manage a large
collection of users, interface with many other systems, and generally be used at the DoD level or
equivalent. These systems should always run in the cloud and should use architectures that allow
interoperability, expandability, and reliability. In most cases the software should be commercial
software purchased (or licensed) without modification to the underlying code, but with DoD-
specific configuration. Examples include email systems, accounting systems, travel systems, and
HR databases.

Logistics systems [Sec 1.2]. Any system that is used to keep track of materials, supplies, and
transport as part of operational use (versus Service-scale logistics systems, with which they
should interoperate). While used actively during operations, logistics systems are likely to run on
commercial hardware and operating systems, allowing them to build on commercial off-the-shelf
(COTS) technologies. Platform-based architectures enable integration of new capabilities and
functions over time (probably on a months-long or annual time scale). Operation in the cloud or
based on servers is likely.

Mission systems [Sec 1.2]. Any system used to plan and monitor ongoing operations. Similar to
logistics systems, this software will typically use commercial hardware and operating systems and
may be run in the cloud, on local services, or via a combination of the two (including fallback
modes). Even if run locally (such as in an air operations center), they will heavily leverage cloud
technologies, at least in terms of critical functions. These systems should be able to incorporate
new functionality at a rate that is set by the speed at which the operational environment changes
(days to months).

Mobile computing [Sec 1.2]. Computing that is carried out on a mobile device, usually connected
to the network via wireless communications. These systems will usually be running on commercial
operating systems using commodity chipsets.

MVP (minimum viable product). A minimum viable product is a first iteration of a software project
that has just enough features to meet basic minimum functionality. It provides the foundational

SWAP Study Final Release, 3 May 2019 S196

capabilities upon which improvements can be made. The goal of an MVP is to quickly get basic
capabilities into users hands for evaluation and feedback.

Security-at-the-perimeter. An approach to security that relies on perimeter access control as
the primary mechanism for protecting against intrusion.

Software-defined systems. Software-defined systems make use of the increased capability of
digital computing to carry out functions that are traditionally associated with hardware. Examples
include software-defined radios and software-defined networking.

Software factory [DSB18]. A set of software tools that programmers use to write their code,
confirm it meets style and other requirements, collaborate with other members of the
programming team, and automatically build, test, and document their progress. This allows teams
of programmers to do iterative development with frequent feedback from users.

Technical debt. The cost that is incurred by implementing a software solution that is expedient
rather than choosing a better approach that would take longer. Technical debt often accrues over
the life of a program as code is expanded and patched. Technical debt can often be “paid down”
by investing in refactoring or re-architecting the code.

Unit testing. A software testing method in which software programs, modules, or functions tested
to determine whether they satisfy a desired set of specifications, typically by testing a large
number of individual tests cases (unit test). Unit testing provides a means of detecting when errors
have been inadvertently introduced into a code base.

Weapons system [Sec 1.2]. Any system that is capable of the delivery of lethal force, as well as
any direct support systems used as part of the operation of the weapon. Note that our definition
differs from the standard DoD definition of a weapons system, which also includes any related
equipment, materials, services, personnel, and means of delivery and deployment (if applicable)
required for self-sufficiency. The DoD definition would most likely include the mission and logistics
functions, which we find useful to break out separately. Software on weapons systems is
traditionally closely tied to hardware, but as we move to greater reliability of software-defined
systems and distributed intelligence, weapons systems software is becoming increasingly
hardware independent (similar to operating systems for mobile devices, which run across many
different hardware platforms).

Catch Phrases

Self denial of service attack. Not letting your organization make use of tools or processes that are
available to others.

Staple test. Any report that is going to be read should be thin enough to be stapled with a regular
office stapler. A standard office stapler is able to staple 25 sheets of paper together => staple test
limit is ~50 pages (but you can get a bit more if you bend over the staples manually).

Takeoff test. Reports should be short enough to read during takeoff, before the movies start and
drinks are served (assuming you got upgraded). The average time from closing the door to hitting

SWAP Study Final Release, 3 May 2019 S197

10,000 ft (wifi on) at IAD is 25 minutes (15 taxi + 10 cruise). Average reading time for a page is 2
minutes => takeoff test limit is ~12 pages.

Waterfall with sprints. A too common approach to implementing agile development principles in a
DoD environment. Development teams work on a rapid sprint cycle and deliver code into a test
environment that takes months to complete (versus actual agile, where code would be released
to users at the end of the spring).

SWAP Study Final Release, 3 May 2019 S198

Appendix J: Study Information
Study Membership

CHAIRS
Richard M. Murray J. Michael McQuade

California Institute of Technology Carnegie Mellon University

MEMBERS
Milo Medin Jennifer Pahlka

Google Code for America

Trae’ Stephens Gilman Louie

Founders Fund Alsop Louie Partners

GOVERNMENT ADVISORS

Jeff Boleng Bess Dopkeen (Jan ‘18-Jan ‘19)
Special Assistant for Software Acquisition Cost Assessment/Program Eval

FEDERALLY FUNDED RESEARCH AND DEVELOPMENT CENTERS SUPPORT
Forrest Shull Kevin Garrison

Software Engineering Institute Institute for Defense Analyses

Craig Ulsh Nicolas Henri-Guertin

MITRE Software Engineering Institute

DATA ANALYSES AND MACHINE LEARNING SUPPORT
John Piorkoski Steven Lee
Johns Hopkins University Applied Physics Lab Rotunda Solutions

Linda Harrell Vladimir Filkov
Johns Hopkins University Applied Physics Lab University of California Davis

Yun Kim Tom Schaefer
Tecolote Tecolote

Kevin Jackameit Dave Zubrow
Tecolote Software Engineering Institute

STUDY SUPPORT

Courtney Barno Devon Hardy

Artlin Consulting Artlin Consulting

Sandra O’Dea

E-3 Federal Solutions

SWAP Study Final Release, 3 May 2019 S199

Software Acquisition and Practices (SWAP) Working Group
Subgroup Participation

Acquisition Strategy
Melissa Naroski Merker (lead)
Larry Asch
Jeff Boleng
Nicolas Chaillan
COL Harry Culclasure
Ben FitzGerald
Nick Kosmidis
Jonathan Mostowski
Nick Tsiopanas

Appropriations
Jane Rathbun (lead)
Maj Gen Patrick Higby
Paul Hullinger
Melissa Naroski Merker
Shannon McKitrick

Contracts
Jonathan Mostowski (lead)

Data & Metrics
Ben FitzGerald (lead)
Jeff Boleng
Victoria Cuff
Bess Dopkeen
Jon Engelbrektson
Mark Krzysko
Melissa Naroski Merker
John Seel
David Zubrow

Infrastructure
Jeff Boleng (co-lead)
John Bergin (co-lead)
Nicolas Chaillan
Victoria Cuff
Robert Gold
Amy Henninger
Richard Kutter

Infrastructure (Cont.)
Jane Rathbun
John Rusnak
Zack Schiller
Philomena Zimmerman

Requirements
Fred Gregory (lead)
Jeff Boleng
Victoria Cuff
Jennifer Edgin
Donald Johnson
Margaret Palmieri
Owen Seely
Philomena Zimmerman

Security & Accreditation
Leo Garciga (lead)
Jeff Boleng
Nicolas Chaillan
Amy Henninger
Maj Gen Patrick Higby
Ana Kreiensieck
Nicolas Lanham
Tom Morton

Sustainment & Modernization
Kenneth Watson (lead)
Stephen Michaluk
Bernard Reger

Testing & Evaluation
Greg Zacharias (lead)
Chad Bieber
Chris DeLuca
Amy Henninger
Lt Col Mark Massaro
Ryan Norman
Tom Simms
Heather Wojton
Philomena Zimmerman

Mr. Jason Tucker

Workforce
Major Justin Ellsworth (lead)
Sean Brady
Kevin Carter

SWAP Study Final Release, 3 May 2019 S200

Defense Innovation Board (DIB), Software Acquisition and Practices (SWAP)
Study Team and Support Team Site Visits

As part of its data gathering activities, the SWAP study team visited a cross-section of
ongoing software programs (both business and weapon systems) across DoD and the
Services. Despite their demanding schedules, program managers and their teams
(civilian and contractor) welcomed members of the study team and shared their valuable
experiences in software acquisition and development, testing, and security. The
knowledge gained from these collaborative sessions provided tremendous input into the
study and the development of the final recommendations. The SWAP study team would
like to thank all those individuals who participated in these site visits for their invaluable
contribution to this study.

Date Companies/Organizations Locations

Mar 2018 Lockheed Martin Fort Worth, TX

Apr 2018 Pivotal, Raytheon Boston, MA

Aug 2018 Raytheon Los Angeles; Aurora, CO

Aug 2018 SPAWAR, ARL Colorado Springs, CO

Sep 2018 Lockheed Martin Moorestown, NJ

Oct 2018 Leidos, Cerner Rosslyn, VA

Nov 2018 Raytheon Tucson, AZ

Special thanks to: Samantha Betting, Richard Calabrese, Tory Cuff, RDML Tom
Druggan, Lt Col Thomas Gabriele, Leo Garciga, Jack Gellen, Arturo Gonzalez, Jill
Hardash, Brian Henson, Cori Hughes, Lisa Jollay, CAPT Bryan Kroger, Col Jennifer
Krolikowski, Lt Col Jason Lee, Myron Liszniansky, Maj Zachary McCarty, Lt Col Steve
Medeiros, Kenneth Merchant, Anna Nelson, David Norley, Scott Paulsen, Kelci Pozzi,
Sandy Scharn-Stevens, Terry Schooley, Thomas Scruggs, Lt Col Kenneth Thill, and Eric
Todd

SWAP Study Final Release, 3 May 2019 S201

Government and Supplemental Program Meetings

In addition to conducting site visits, the SWAP study team engaged with a broad spectrum
of offices within DoD and the Services that possess ownership of the regulations and
policies that relate to the software acquisition and/or development life cycle and their
associated challenges. In the spirit of practicing an agile methodology, these regular
collaborative sessions resulted in cyclic user feedback. The meetings listed below are not
exhaustive, but we aimed to capture the wide array of offices that provided feedback to
the SWAP study team, highlighting the myriad and assorted offices within DoD that are
intertwined with software.

3 – 4 APRIL 2019 MEETINGS

Office of the Under Secretary of Defense
(Acquisition & Sustainment)

Office of the Under Secretary of Defense
(Comptroller) & Chief Financial Officer

Department of Defense Chief Information Officer

Office of the Director, Operational Test and
Evaluation

Office of the Secretary of the Air Force/AQR -
Science, Technology, and Engineering

Assistant Secretary of the Navy for Research,
Development and Acquisition
Office of the Chief of Naval Operations

Office of the Chief Information Officer (CIO)/G6,
Department of the Army

 20 – 22 MARCH 2019 MEETINGS

Office of the Secretary of Defense

Office of the Under Secretary of Defense
(Acquisition & Sustainment)

Office of the Director, Operational Test and
Evaluation

Cost Assessment and Program Evaluation

Office of Personnel & Readiness

Office of the Under Secretary of Defense
(Research & Engineering)

Department of Defense Chief Information Officer

4 – 6 DECEMBER 2018 MEETINGS
Office of the Under Secretary of Defense
(Comptroller) & Chief Financial Officer

Office of the Director, Operational Test and
Evaluation

19 NOVEMBER 2018 MEETING

Supplemental Program Session

Lockheed Martin

Air Force Life Cycle Management Center
Office of the Secretary of the Air
Force/Acquisition

2 OCTOBER 2018 MEETING

Supplemental Program Session

Lockheed Martin

Naval Sea Systems Command

24 SEPTEMBER 2018 MEETING

Office of the Under Secretary of Defense
(Acquisition & Sustainment)

Office of the Under Secretary of Defense
(Research & Engineering)

17 AUGUST 2018 MEETING

Air Force Materiel Command/Air Force Life
Cycle Management Center

SWAP Study Final Release, 3 May 2019 S202

 27 – 28 FEBRUARY 2019 MEETINGS

Joint Rapid Acquisition Center

Office of Personnel & Readiness

Defense Digital Services

Defense Security Cooperation Agency

17 – 18 JANUARY 2019 MEETINGS

Office of the Under Secretary of Defense
(Acquisition & Sustainment)

Office of the Under Secretary of Defense
(Research & Engineering)

Department of Defense Chief Information Officer

Office of the Under Secretary of Defense
(Comptroller) & Chief Financial Officer

Cost Assessment and Program Evaluation

Office of the Chief Management Officer

Office of the Secretary of the Air Force for
Acquisition, Technology, & Logistics

Office of the Secretary of the Navy
Office of the Assistant Secretary of the Navy for
Research, Development, & Acquisition - Command,
Control, Communications, Computers, Intelligence

Representatives from Industry

23 JULY 2018 MEETING

U.S. Navy

Naval Air Warfare Center Weapons Division

 3 JULY 2018 MEETINGS

Congressional Research Service

U.S. Army Contracting Command

SWAP Study Final Release, 3 May 2019 S203

Charge from Congress

2018 NATIONAL DEFENSE AUTHORIZATION

ACT

SEC. 872. DEFENSE INNOVATION BOARD ANALYSIS OF SOFTWARE

ACQUISITION

REGULATIONS.

(a) STUDY.—

(1) IN GENERAL.—Not later than 30 days after the date of the enactment of this Act, the

Secretary of Defense shall direct the Defense Innovation Board to undertake a study on

streamlining software development and acquisition regulations.

(2) MEMBER PARTICIPATION.—The Chairman of the Defense Innovation Board shall

select appropriate members from the membership of the Board to participate in the study, and

may recommend additional temporary members or contracted support personnel to the Secretary

of Defense for the purposes of the study. In considering additional appointments to the study, the

Secretary of Defense shall ensure that members have significant technical, legislative, or

regulatory expertise and reflect diverse experiences in the public and private sector.

(3) SCOPE.—The study conducted pursuant to paragraph (1) shall—

(A) review the acquisition regulations applicable to, and organizational structures within,

the Department of Defense with a view toward streamlining and improving the efficiency and

effectiveness of software acquisition in order to maintain defense technology advantage;

(B) review ongoing software development and acquisition programs, including a cross

section of programs that offer a variety of application types, functional communities, and scale,

in order to identify case studies of best and worst practices currently in use within the

Department of Defense;

(C) produce specific and detailed recommendations for any legislation, including the

amendment or repeal of regulations, as well as non-legislative approaches, that the members of

the Board conducting the study determine necessary to—

(i) streamline development and procurement of software;

(ii) adopt or adapt best practices from the private sector applicable to Government use;

(iii) promote rapid adoption of new technology;

(iv) improve the talent management of the software acquisition workforce, including by

providing incentives for the recruitment and retention of such workforce within the Department

SWAP Study Final Release, 3 May 2019 S204

of Defense;

(v) ensure continuing financial and ethical integrity in procurement; and

(vi) protect the best interests of the Department of Defense;

and

(D) produce such additional recommendations for legislation as such members consider

appropriate.

(4) ACCESS TO INFORMATION.—The Secretary of Defense shall provide the Defense

Innovation Board with timely access to appropriate information, data, resources, and analysis so

that the Board may conduct a thorough and independent analysis as required under this

subsection.

(b) REPORTS.—

(1) INTERIM REPORTS.—Not later than 150 days after the date of the enactment of

this Act, the Secretary of Defense shall submit a report to or brief the congressional defense

committees on the interim findings of the study conducted pursuant to subsection (a). The

Defense Innovation Board shall provide regular updates to the Secretary of Defense and the

congressional defense committees for purposes of providing the interim report.

(2) FINAL REPORT.—Not later than one year after the Secretary of Defense directs the

Defense Advisory Board to conduct the study, the Board shall transmit a final report of the study

to the Secretary. Not later than 30 days after receiving the final report, the Secretary of Defense

shall transmit the final report, together with such comments as the Secretary determines

appropriate, to the congressional defense committees.

ACQUISITION

AND SUSTAINMENT

THE UNDER SECRETARY OF DEFENSE

301 0 DEFENSE PENTAGON
WASHINGTON, DC 20301-3010

APR O 5 2018

MEMORANDUM FOR CHAIRMAN, DEFENSE INNOVATION BOARD

SUBJECT: Terms of Reference - Establishment of the Software Acquisition and Practices
Subcommittee of the Defense Innovation Board

Today's advances in software are pushing new frontiers in lethality, speed, precision,
accuracy, and efficiency. The Department of Defense's (DoD) ability to field and sustain

weapon systems will increasingly depend on its ability to upgrade, develop, and deploy software
or acquire commercial software. The technology and business of software development has
undergone a radical transfom1ation over the last decade, yet DoD's approach to assess and
acquire commercial off-the-shelf software (COTS) products, use and improve existing
Government off-the-shelf (GOTS) software, further develop commercial software products to
meet unique government needs, or independently develop software products has changed little.
This stymies progress and represents significant risk. Software is increasingly the decisive factor

in determining the capabilities of modern weapon systems and is often the limiting factor for
integrating sensors, platforms, and weapons. For these reasons, an analysis of the Do D's
software development and acquisition practices across the range of business and weapon systems
is urgently needed as part of the DoD's broader efforts at modernization and reform.

Modernizing the DoD's approach to software development and acquisition has the
potential to accelerate fielding of new capabilities, reduce cost, and increase the lethality of our
forces. Failure to modernize also carries costs, perpetuating the often slow, unwieldly,
requirements-driven approach to software that no longer serves the warfighter or taxpayer well.
Moreover, as the field of artificial intelligence progresses, employing rapid, iterative software
development, as well as leveraging COTS and GOTS alternatives, will provide critical
warfighting capabilities and competitive advantages.

Section 872 of the National Defense Authorization Act (NDAA) for Fiscal Year (FY)
2018 (Public Law 115-91), requires the Secretary of Defense to direct the Defense Innovation
Board (DIB) to undertake a study on streamlining software development and acquisition

regulations. The Secretary of Defense delegated this authority to the undersigned on 2 January
2018. As such, I am establishing the Software Acquisition and Practices (SW AP) Subcommittee
of the DIB to undertake a data-driven analysis of how DoD develops, acquires, and employs
software technologies and capabilities.

The NDAA for FY 2018 stipulates that the study must:
(1) Review the acquisition regulations applicable to, and organizational structures within,
DoD with a view toward streamlining and improving the efficiency and effectiveness of
software acquisition in order to maintain defense technology advantage;
(2) Review ongoing software development and acquisition programs, including a cross
section of programs that offer a variety of application types, :functional communities, and
scale, in order to identify case studies of best and worst practices currently in use within
DoD;

FOR OFFICIAL USE ONLY

FOR OFFICIAL USE ONLY

(3) Produce specific and detailed recommendations for any legislation, including the
amendment or repeal of regulations, as well as non-legislative approaches, that the
members of the Board conducting the study determine necessary to-

(a) Streamline development and procurement of software;
(b) Adopt or adapt best practices from the private sector applicable to Government
use;
(c) Promote rapid adoption of new technology;
(d) Improve the talent management of the software acquisition workforce, including by
providing incentives for the recruitment and retention of such workforce within DoD;
(e) Ensure continuing financial and ethical integrity in procurement; and
(t) Protect the best interests of DoD; and

(4) Produce such additional recommendations for legislation as such members consider
appropriate.

The SW AP Subcommittee will provide its recommendations for any legislation,
including the amendment or repeal of regulations, and actions to be considered by DoD
to the DIB for full and thorough public deliberation and approval. The DIB will submit
an interim report to my office not later than May 11, 2018, and a final report not later than
April 5, 2019, reporting directly back to me on the study's progress as appropriate.

In conducting its work, the DIB and its subcommittees have my full support in all
requests for information, data, resources, and analysis that may be relevant to its research
and fact-finding under this Terms of Reference so that the DIB may conduct a thorough
and independent analysis as required by section 872 of the NDAA for FY 2018. As such,
the Office of the Secretary of Defense, Component Heads, and the Military Departments
are directed to promptly facilitate the work of the DIB and the SWAP Subcommittee by
ensuring that the DIB staff and members have timely access to any relevant personnel and
information necessary to perform their duties consistent with the requirements and
limitations of existing law that may be applicable.

As a subcommittee of the DIB, the SW AP Subcommittee shall not work
independently of the DIB's charter and shall report its recommendations to the full DIB for
public deliberation and approval, pursuant to the Federal Advisory Committee Act of 1972,
as amended, the Government in the Sunshine Act of 1976, as amended, and other
applicable Federal statutes and regulations. The SWAP Subcommittee does not have the
authority to make decisions on behalf of the DIB nor can it report directly to any Federal
representative. The members of the SW AP Subcommittee and the DIB are subject to title
18, United States Code, section 208, which governs conflicts of interest.

Ellen M. Lord

2

FOR OFFICIAL USE ONLY

	COMPLETE SWAP REPORT - 4-30-2019
	SWAP Front Cover
	SWAP Back of Front Cover
	Title Page - FINAL
	Cover memo for software study from Eric Schmidt Apr 3 2019 (for bond paper)
	2019_04_22 signed cochair letter
	SWAP Front Matter - FINAL 4_26-2019
	Software Is Never Done:
	Table of Contents
	Supporting Information

	Chapter 0. README (Executive Summary)
	Recommendations “Cheat Sheet”

	SWAP Main Report - FINAL 4-26-2019
	Chapter 1. Who Cares: Why Does Software Matter for DoD?
	1.1 Where Are We Coming From, Where Are We Going?
	1.2 Weapons and Software and Systems, Oh My! A Taxonomy for DoD
	1.3 What Kind of Software Practices Will We Have to Enable?
	1.4 What Challenges Do We Face (and Consequences of Inaction)?

	Chapter 2. What Does It Look Like to Do Software Right?
	2.1 How It Works in Industry (and Can/Should Work in DoD): DevSecOps
	2.2 Empowering the Workforce: Building Talent Inside and Out
	2.3 Getting It Right: Better Oversight AND Superior National Security
	2.4 Eye on the Prize: What Is the R&D Strategy for Our Investment?

	Figure 2.1 A former U.S. Marine Corps sergeant, now a Microsoft field engineer, works with an IT support specialist with the Navy as part of his job to travel to commercial companies and military bases across the country and train IT staff about a sys...
	Chapter 3. Been There, Done Said That: Why Hasn’t This Already Happened?
	3.1 37 Years of Prior Reports on DoD Software
	3.2 Breaking the Spell: Why Nothing Happened Before, but Why This Time Could Be Different
	3.3 Consequences of Inaction: Increasing Our Attack Surface and Shifting Risk to the Warfighter

	Chapter 4. How Do We Get There from Here: Three Paths for Moving Forward
	4.1 Path 1: Make the Best of What We’ve Got
	4.2 Path 2: Tune the Defense Acquisition System to Optimize for Software
	4.3 Path 3: A New Acquisition Pathway and Appropriations Category for Software to Force Change in the Middle

	Chapter 5. What Would the DIB Do: Recommendations for Congress and DoD
	5.1 The Ten Most Important Things to Do (Starting Now!)
	Line of Effort A. Congress and OSD should refactor statutes, regulations, and processes for software, providing increased insight to reduce the risk of slow, costly, and overgrown programs and enabling rapid deployment and continuous improvement of so...
	Line of Effort B. OSD and the Services should create and maintain cross-program/ cross-Service digital infrastructure that enables rapid deployment, scaling, and optimization of software as an enduring capability, managed using modern development met...
	Line of Effort C. The Services and OSD should create new paths for digital talent (especially internal talent) by establishing software development as a high-visibility, high-priority career track and increasing the level of understanding of modern so...
	Line of Effort D. DoD and industry must change the practice of how software is procured and developed by adopting modern software development approaches, prioritizing speed as the critical metric, ensuring cybersecurity is an integrated element of the...

	5.2 The Next Most Important Things to Tackle
	5.3 Monitoring and Oversight of the Implementation Plan
	5.4 Kicking the Can Down the Road: Things That We Could Not Figure Out How to Fix

	Acknowledgments
	SWAP Vignettes

	SWAP Supporting Information - FINAL 4.26.2019
	SWAP Back Cover

	Establishment of the Software Acquisition and Practices Subcommittee .._

