

 1

Triple Your Chances of Project Success

Risk and Requirements
Louis S. Wheatcraft

Wheatland Consulting, LLC
 (281) 486-9481

Wheatland.Consulting@gmail.com
Copyright © 2011 by Wheatland Consulting, LLC. Published and used by INCOSE with permission.

Paper ID181 presented at INCOSE IS2011 and NASA PM Challenge 2012

Abstract. Requirements have a big impact on project success. Studies show the importance of
having a good set of requirements that are clear, complete, correct, and consistent as well as
the consequences of not having a good set of requirements. Having poor requirements places
projects at risk of significant cost overruns, schedule delays, and performance shortfalls. In
fact, recent studies have shown that projects who fail to take effective actions to ensure a good
set of requirements triple their chances of project failure. The emphasis of this paper is to
identify common requirement development and management risks that can have an impact on
a project’s success, possible consequences of these risks, and strategies to mitigate the risks
and avoid the consequences of those risks. Recognizing the fact that poor requirements
represent a significant risk to your project and mitigating these risks can triple your chances of
project success.

Risk and Requirements
Recognizing the importance of a disciplined approach to product development and the need to
define a good set of requirements so projects can be successful, various organizations
responsible for creating product development and system engineering processes have defined
processes based on best practices in industry and government. These processes are
documented in various standards (see references) all of which stress the importance of upfront
processes for defining product scope and requirements. The result of following these processes
is a set of requirements that describe the characteristics, capabilities, functionality,
performance, and quality the system needs to have to meet stakeholder expectations. These
requirements provide the foundation upon which the product design is based.

With this emphasis on requirement development and management, it is logical to assume that
project managers would want to avoid the risks associated with having a poor set of
requirements. Therefore it is logical to assume these project managers would follow proven
best practices to ensure a set of well-written requirements is established before contracting the
design and development of their product. Unfortunately, this does not happen as often as it
should. Many managers continue to fail to place the proper emphasis on having good
requirements and communicating the importance of good requirements to their project team.
Because of this, many projects are being set up for failure from the beginning, tripling their
chances of project failure.

NASA’s Office of Inspector General (OIG) November 2008 report [OIG 2008] focused on five major
challenges; one of which concerns acquisition and contracting processes. The OIG concluded
that: “NASA must be vigilant in its process of establishing and validating project requirements.”
Program risks increase when contractual obligations are established before developing a sound

mailto:Wheatland.Consulting@gmail.com

 2

business case and clearly defining requirements; placing “the project at risk of significant cost
overruns, schedule delays, and performance shortfalls. Effective risk management, safety, and
mission assurance controls are key to supporting robust and reliable operations in the context
of very challenging launch and mission schedules.” (Emphasis added.)

The United States General Accountability Office (GAO) has also reported on systemic issues
involving government organization’s acquisition processes emphasizing the important role
requirement development and management has on the success of a project. In a June 2003
report [GAO 2003], the GAO stated that a key to a successful project lies in the “ability to match
users’ needs, or requirements, with the developer’s resources (technology and design
knowledge, money, and time) when product development begins.” The GAO asserts their
studies show that “doing so can prevent rework and save both time and money.” (Emphasis
added.)

The GAO stated: “The start of product development represents the point at which program
managers make a commitment to provide a product that will perform as required and be
delivered on time and within estimated costs. Our work has shown that programs are more
likely to succeed if program managers are able to achieve a match between user needs, which
eventually become requirements, and resources (technology, design and production
knowledge, money, and time) at the start of product development. Conversely, if they do not
match requirements with resources, cost overruns and schedule delays are likely to occur,
reducing an organization’s buying power in other areas.” (Emphasis added.)

Effect of Requirements Definition Investment on Program Costs

DoD has also zeroed in on the impacts of poor requirements on their weapons acquisition
process. In a recent article, Executive Gov article[Moore 2010] Jack Moore reported “In the efforts
to rein in the Defense Department’s acquisition process, the practice of developing
requirements for combat systems is getting a looking at, according to a Federal Times report.
“Requirements development . . . has been identified as a weakness in the department and has
led to cost and schedule overruns on many programs,” said deputy DoD acquisition chief Frank
Kendall in a memo last month. “Requirements development is paramount to successful
acquisition outcomes.” The solution to the cost-overruns and other problems that often result
from inadequately developing requirements is better training, Kendall said.” (Emphasis added.)

In the Federal Times report[Bennett 2010], John Bennett reported: “Top Pentagon arms buyers have
heard the calls to improve specification development for weapon programs and support
services, and are emphasizing better training for the acquisition work force. Countless
lawmakers and analysts have sharply criticized the process the Defense Department uses to
decide what features its combat systems should possess. Senior Pentagon officials have said
changes to the requirements-generation process could be enacted. "Requirements
development … has been identified as a weakness in the department and has led to cost and
schedule overruns on many programs," Kendall wrote in a Nov. 19 Pentagon memo.
"Requirements development is paramount to successful acquisition outcomes.” (Emphasis
added.)

According to the Standish Group [Standish 1995], in 1995, “U.S. government and businesses spent
approximately $81 billion on cancelled software projects, and another $59 billion for budget

 3

overruns.” Their survey claimed that in the United States, only about one-sixth of all projects
were completed on time and within budget, nearly one third of all projects were cancelled
outright, and well over half were considered “challenged.” Of the challenged or cancelled
projects, the average project was 189 percent over budget, 222 percent behind schedule, and
contained only 61 percent of the originally specified features. The Standish Group [Standish 2003]

stated: “Losing sight of requirements is often the first step on the road to projects that come in
over budget, are late, do not meet specifications or are canceled.” (Emphasis added.)

As reported by Ivy Hooks [Hooks 2001], studies conducted by NASA revealed average cost and
schedule overruns of approximately 65 percent on 29 programs. The graphic shown in Figure 1
was produced by NASA’s Comptroller's Office in the early 1990s depicting NASA programs from
the 1970s and 1980s. The x-axis denotes the percentage of the program cost expended "up-
front" in the requirements definition and design stage. The y-axis denotes the percentage
overrun of the program costs. All programs identified on this graph overran its budget. We call
this the “pay now or pay later” chart. Failing to invest in upfront scope and requirements
development results in significant cost overruns and schedule slips due to the resulting rework.

If a project manager reviews his or her own projections, they may find that only about 5
percent was allotted for the up-front work, placing the project’s success at risk. This almost
guarantees a large overrun in cost and schedule. Much of the cost overruns shown in Figure 1
can be attributed to requirements changes. Much of that change was self-inflicted because of
poor up-front work. It does not take a mathematician to see that an up-front investment can
pay off substantially in the development of a system.

Figure 1: NASA Comptroller Cost Growth Chart

INCOSE’s System Engineering Handbook [INCOSE 2007] features similar charts that tell the same
story concerning both cost and schedule overruns due to not adequately investing in the
needed amount of system engineering effort at the beginning of a project. The SE Handbook

20

80

60

40

160

140

120

100

200

180

5 10 15 20 25 30

OMV

GRO 78

GALL

TDRSS

CEN
HST

EUVE/EP

GOES I-M

ACT

MARS

MAG

SEASAT
UARS

DE
SMM

ERB 77

LAND 76

IRAS

TETH

STS LAND 78

GRO 82

ERB 80

VOYAGER

ULYSSES

PION/VEN
IUE

ISEE

COBE

HEA

Target Total Cost
Requirements Definition and Preliminary Design

T
a

rg
e

t
C

o
s

t
A

c
tu

a
l
–

T
a

rg
e

t
C

o
s

t

20

80

60

40

160

140

120

100

200

180

5 10 15 20 25 30

OMV

GRO 78

GALL

TDRSS

CEN
HST

EUVE/EP

GOES I-M

ACT

MARS

MAG

SEASAT
UARS

DE
SMM

ERB 77

LAND 76

IRAS

TETH

STS LAND 78

GRO 82

ERB 80

VOYAGER

ULYSSES

PION/VEN
IUE

ISEE

COBE

HEA

Target Total Cost
Requirements Definition and Preliminary Design

Target Total Cost
Requirements Definition and Preliminary Design

T
a

rg
e

t
C

o
s

t
A

c
tu

a
l
–

T
a

rg
e

t
C

o
s

t
T

a
rg

e
t

C
o

s
t

A
c

tu
a

l
–

T
a

rg
e

t
C

o
s

t

 4

authors conclude: “systems engineering effort can be a positive factor in controlling cost
overruns and reducing the uncertainty of project execution.” Good system and software
engineering processes emphasize the importance of understanding stakeholder expectations at
the beginning and being able to clearly communicate those expectations in a language
(requirements) that can be unambiguously understood by developers.

Similar impacts have been reported for software-intensive projects in industry as well. The
importance of using best requirement practices on project success was recently documented in
a report by Keith Ellis [Ellis 2008]. In the report, Ellis studied over 100 companies with development
projects in excess of $250,000.

As a result of this study, Ellis found that for 68 percent of the companies evaluated, project
success is “improbable.” Ellis said, “projects might succeed – but not by design. Based on the
competencies present, these companies are statistically unlikely to have a successful project.”
While these companies indicated they recognized that requirements are important to project
success, they still failed to take effective actions to ensure a good set of requirements and by
doing so, they tripled their chances of project failure.

Ellis concludes: “Organizations understand conceptually that requirements are important, but
do not internalize this understanding and change their behavior as a result. The most
successful of companies do not view requirements as a document which either existed or didn’t
at the beginning of a project, they view it as a process of requirements discovery. Only
companies that focus on both the process and the deliverables are consistently successful at
changing project success rates.” (Emphasis added.)

Based on the previous discussion, it should be clear that requirements are key to the success of
a project and that when a good set of requirements is not developed, the project is at high risk
and doomed to failure from the beginning. The following two quotes clearly make these points.

Ivy Hooks, President of Compliance Automation, Inc. states: “People who write bad
requirements should not be surprised when they get bad products. But they always are.”

In July 2009, NASA Administrator Charles Bolden stated: “Putting forth the same effort, or
using the same approach, then expecting different results is ... insanity.”

A Winning Product vs. Risk

The goal of all projects should be to deliver a winning product. A winning product is defined
herein as: “A product that delivers what is needed, within budget, within schedule, and with the
desired quality.”

A simple and practical definition of risk is: “Anything that can prevent you from delivering a
winning product!” Given the importance of requirements to the success of a project, poor
requirements represent a major project risk.

Risks are something that could have an impact on your product or subsystem (hazard or threat).
Risk has two major components: likelihood and impact/consequences. In the following
discussion, the scope risk factors are things you have control over. Failing to follow these best
practices means the likelihood of these risks to your project is 100%. The possible impact or
consequences listed are what you are trying to avoid.

 5

As the above discussion has shown, failing to implement an effective requirement development
and management process represents a significant risk to your project’s ability to deliver a
winning product. Therefore, all project managers need to mitigate this risk from the beginning.
Recognizing the fact that poor requirements represent a significant risk to your project and
mitigating these risks can triple your chances of project success.

In February 2010, NASA released NASA Space Flight Program and Project Management
Handbook [NASA 2010]. This handbook captures program and project management best practices
from experienced managers, providing the continuity of that expert knowledge base. Spread
throughout the handbook are statements concerning the importance of defining and
incorporating requirement development processes into your project. The handbook states:

• “All acquisitions should start with a requirement definition that clearly identifies the
Agency’s desired outcome for a contract.”

• “Establishing a good set of program mission/operation concepts that are evolved into a
useful set of program requirements is one of the most critical products for program
success.”

• “The most common negative finding made by independent review teams is that a project
did not place sufficient effort and importance on understanding and developing project
requirements.”

• “One of the greatest risks that a project faces comes from ill-defined requirements.”

• “Poorly written requirements, incomplete requirements, and poorly written contracts
result in cost overruns and schedule slips.”

• “Managers need to be able to identify risks and add the mitigation costs to the program
baseline. When risks are identified and the qualitative value assigned to the risk has been
verified, the PM needs to take action in the timeframe associated with that risk.”

In January 2011, DOD released “National Security Space Strategy” report[DOD 2011]. In the report,
DOD emphasized the importance of requirements and their acquisition process, stating: “In
cooperation with our industrial base partners, DoD and the Intelligence Community (IC) will
revalidate current measures and implement new measures, where practicable, to stabilize
program acquisition more effectively and improve our space acquisition processes. We will
reduce programmatic risk through improved management of requirements. We will use proven
best practices of systems engineering, mission assurance, contracting, technology maturation,
cost estimating, and financial management to improve system acquisition, reduce the risk of
mission failure, and increase successful launch and operation of our space systems.” (Emphasis
added.)

To reduce the risk on your project, you need to integrate requirement best practices into your
requirement development and management processes. The following sections walk you
through these best practices, key risk factors associated with not following those best practices,
and the impacts those risks can have on your project.

Scope Risk
The scope of a project constitutes the vision: the need to develop or procure a product or
service; the goals and objectives of the stakeholders; information about the customers and
users of the product or service; and how the product will be developed or purchased, tested,

 6

deployed and used. The scope also includes the boundaries and constraints of the product. A
project with no boundaries will diverge.

Project scope definition benefits the quality of your product requirements by preventing
incorrect requirements and preventing many omissions. An early scope definition keeps
requirement writers from diverging, reduces requirement inconsistencies, and keeps the big
picture in view. It also shortens the time required for requirement writing and rewriting and
reduces debates.

If you spend time up-front to define a clear scope, you will have more knowledge before you
begin to capture requirements. You will document and confirm assumptions and resolve action
items before your start writing requirements.

A major contributor to project failure is the failure to spend the time at the beginning of the
project to clearly define the project scope before writing your requirements and beginning
product development.

Scope Risk Factors

• Failure to define Scope

Failing to define your project and product scope can have major impacts and consequences on
your ability to deliver a winning product. The product purpose/use will not be well understood
resulting in not being able to meet stakeholder expectations. Failing to define scope also can
result in your team being faced with vague and undefined desired outcomes, lacking the
knowledge they need to write requirements, setting your project team up for failure.

If your team lacks clear direction due to a lack of a common vision, the volatility and divergence
of individual visions will result in conflicts between stakeholders and a constant stream of
issues. These will lead to constant change and scope creep, which, in turn, will have significant
impacts on your budget and schedule.

• Failure to define Need, goals, and objectives

The Need for a project defines the “why” – why are we doing this? What are we trying to
accomplish? The Need is based on an analysis of a problem that the project is supposed to
solve for some stakeholder or group of stakeholders. Goals are those things that you plan to
accomplish that will result in meeting the Need. Objectives are measures of performance,
including key performance parameters that show that you have met the goals. Objectives show
that you have “gotten there”, i.e., your project accomplished what was expected of it by the
stakeholders.

Failing to define the Need, goals, and objectives for your project results in your team being
faced with vague and undefined desired outcomes with no clear direction. Failing to define
your objectives, means you have not defined, and gotten agreement on, the criteria for success.

• Failure to involve relevant stakeholders

Stakeholders include key representatives from various organizations and groups that have a
“stake” in your project. This can include those who buy it, sell it, use it, train others to use it,
design it, develop it, test it, market it, maintain it and expect to profit from it. Each may have a

 7

very different point of view and list of priorities. Stakeholders are a major source of
requirements. All stakeholders should be accounted for and considered prior to writing
requirements.

Failing to involve key stakeholders can result in battles due to differing visions and different
interpretations of what your project includes or excludes. Issues are not identified and resolved
before investing scarce resources into the requirement writing effort. Because of this, more
time is taken to write requirements and will slow down the requirement review and baseline
process.

Failing to involve relevant stakeholders can result in missing requirements and subsequent
change later in the product lifecycle to add in the missing requirements. Too many
assumptions will have to be made, resulting in incorrect information and stakeholder
expectations not met.

• Failure to identify drivers and constraints

Drivers and constraints are those things that are imposed on your project from outside your
project that you have little control over, but have to be complaint with. These include
requirements allocated to you from a higher level, standards, regulations, cost, schedule,
technology, and existing systems. Drivers and constraints represent requirements.

Failing to identify drivers and constraints can result in missing requirements and subsequent
costly change later in the product lifecycle. Failing to identify standards and regulations can
result in your product not being in compliance. How can your product meet security or safety
requirements if those requirements were not identified and included in your product’s
requirement set? If this happens, expensive rework and schedule slips result. Failing to identify
the existing systems your product must interact (interface with) could result in your product
failing to work with those existing systems.

• Failure to define a feasible concept to meet the stakeholder needs

Before writing requirements, you need to develop a set of operational concepts that address
the views of all the stakeholders, all the products lifecycles, and address both nominal and off-
nominal conditions. Operational concepts bridge the gap between product scope and
requirements. The practice of defining and documenting operational concepts is a simple, cost-
effective way to build consensus among all stakeholders and discover which questions still need
to be asked and answered prior to writing product requirements.

Failing to define a feasible concept (cost, schedule, technology) to meet your stakeholder needs
can result in the stakeholder expectations not being met. If you fail to address all lifecycle
stages and both nominal and off-nominal cases, you will have missing requirements and your
system will lack the expected robustness to handle off-nominal cases. The missing
requirements and subsequent change later in the product lifecycle to add in the missing
requirements can result in scope creep, expensive rework, and schedule slips.

• Failure to define product boundaries and external interfaces

An interface is a boundary where, or across which, two systems interact. Serious problems can
arise at interfaces. Your project is particularly vulnerable to interfaces with other products over

 8

which you have no control. Because of this, you product is at most risk at the interfaces.
Identifying interfaces helps you to define your system’s boundaries and helps you understand
the dependencies your system has with other systems and dependencies other systems have
with your system. Indentifying interfaces helps you ensure compatibility between your system
and other systems you need to interact. Identifying interfaces also helps to expose potential
project risks.

Failing to identify an interface can have unpleasant repercussions on your project and is a
common reason for products that fail to meet stakeholder expectations. Failing to identify or
incorrectly define an interface is often a major cause of cost overruns and product failures.
Failing to address your interfaces can result in missing requirements and subsequent change
later in the product lifecycle. Failing to agree on an interface definition can result in you doing
work you don’t need to do or can result in you not doing work you should have done. The end
result of failing to address your interfaces is that your system may not work as expected when
interacting with other systems.

• Failure to baseline scope before writing requirements

One of the most frequent reasons for project failure is “scope creep”. Baselining your scope
before writing your requirements, puts your scope under configuration control and the
resulting configuration control process. Any changes proposed to your product has to first go
to the configuration control board, evaluated for feasibility and impacts to cost and schedule,
and formally approved.

Failing to baseline scope before writing requirements can result in scope creep and the
resulting uncontrolled change. Failing to define scope also results in there not being a single
clear vision for your product, rather each stakeholder has their own vision. This can result in
conflicts due to an inconsistent, incorrect, and incomplete set of requirements. This then will
result in significant cost and schedule impacts.

• Mitigating Scope Risk

The defense against all these risk factors is to clearly define your project’s scope at the
beginning and then validate that scope with all the key stakeholders, getting their agreement
on the scope before proceeding with writing your requirements. The largest scope risk, by far,
is wishful thinking (budget/cost, schedule, and technology). To avoid the scope risks discussed
above, include the following in your requirement development and management process:

• Develop a clear vision – identify the Need, goals, and objectives for your project and
product.

• Identify and involve relevant stakeholders

• Identify and manage drivers and constraints

• Develop operational concepts

• Identify and manage external interfaces

• Identify and manage scope risk

• Baseline Scope (Scope Review or Mission Concept Review)

 9

Requirement Risk

Requirements describe the characteristics, capabilities, functionality, performance, and quality
your system needs to have in order to meet stakeholder expectations. These requirements
provide the foundation upon which the product design is based. Requirements are the
technical language that communicates to the developers the stakeholder expectations as
defined in the scope. A well-written set of requirements will result in a product that will meet
the stakeholder expectations.

Defective requirements represent risk to your project. As shown in Figure 2[Hooks 2001], the cost
to fix requirement defects increases exponentially as you move through the product lifecycle
phases. This table illustrates the order of magnitude costs of finding and fixing defects as we
progress in the life cycle. So, the cost of finding and fixing defects in the coding phase is 10
times more expensive than finding and fixing it during the requirements phase. Finding defects
during Development Test, 15-40 times, Acceptance test, 30-70 times and so-forth.

Indentifying and removing these defects as early as possible will result in significant cost
savings. Conversely, allowing these defects to go undetected until the later phases of your
product development will result in significant cost and schedule risk.

Figure 2: Cost to fix requirement defects

Requirement Risk Factors

• Requirement not necessary

A mandatory characteristic of a requirement is that it is needed. If a requirement is not
needed, why is it in the requirement set? Requirements that are not necessary result in
increased management cost of the requirements that, in turn, increases overall project costs
and leaves less resources for needed requirements. All requirements need to be maintained,
managed, and verified. Un-needed requirements can result in work being performed that is
not necessary, taking resources away from the implementation of those requirements that are
needed. In addition, implementing requirements that are not necessary can result in degraded
system performance as well as introducing a potential source of failure and conflict.

 10

• Requirement not verifiable

Another mandatory characteristic of a requirement is that it must be verifiable. Why ask for
something when you can’t prove it has been implemented as intended? A requirement that is
not verifiable could result in the developers implementing the wrong thing or the people doing
verification verifying the system does the wrong thing rather than what was intended. If the
true intent of the requirement is not clear, stakeholder expectations may not be met.

• Requirement not attainable

Another mandatory characteristic of a requirement is that it must be attainable. Why state a
requirement you know cannot be implemented given the existing budget, schedule, or level of
technical maturity? Why state a requirement when you haven’t done the assessment on
whether or not it can be implemented within your existing budget, schedule, or level of
technical maturity? Stating a requirement that is not attainable will result in wasted effort, cost
and schedule impacts, as well as stakeholder expectations (performance) not being met.

• Requirement can be understood more than one way

A requirement that can be understood more than one way is ambiguous. If a requirement is
ambiguous, the result is a requirement that is not verifiable and may result in the developers
implementing the wrong thing and thus stakeholders’ expectations are not met because the
true intent of the requirement was misunderstood.

• Requirement(s) incomplete

A requirement is incomplete when there is information missing needed to understand the
requirement or to verify the requirement. The information may be in the requirement text or
in an attribute of the requirement (rationale). A classic case is when there is an interface
requirement that does not point to where the interface is defined. Another case is when a
value is not defined (has a to be determined (TBD) or To be supplied (TBS). An incomplete
requirement can result in the requirement not being able to be implemented as intended and
stakeholder expectations not being met.

As a set, incomplete requirements are also a risk. If there are missing requirements the product
may not be able to do the job that was intended and again stakeholder expectations not being
met. If the missing requirements deal with drivers and constraints, your system may not be in
compliance with standards or regulations (law). If the missing requirements have something to
do with an interface that was not identified or defined, then your product may fail to work
when interacting with other systems.

• Requirement reflects implementation

In general, the focus on predesign requirements is on the “what” and not the “how”. How is
implementation. Often when an implementation is stated, the reason is that the requirement
belongs at a lower level and that the real requirement is missing at the level you are at. By
stating implementation, the real requirement goes unstated - the “why” is not communicated
to the developers. If the real requirement is not stated, it cannot be flowed down (allocated)
properly to the next level of the architecture. In addition, by stating implementation, the

 11

developer’s solution space is restricted, not allowing the developer to propose the “best”
solution to meet your expectations.

• Requirement(s) subject to change

Next to the cost of verification, rework is often the most expensive part of a project. Changing
requirements often result in rework that will impact your cost and schedule. If a requirement is
subject to change (or has already changed multiple times), it is a risk to your project. Because
of this, requirements that are subject to change must be identified. After these are identified,
you have to determine if the change matters and if it does, when is it important.

Some requirement changes are unavoidable. A standard or regulation may be updated. An
interface definition may change. Technologies may not deliver what was expected.
Stakeholders may change, resulting in different expectations. If you don’t respond to these
changes, your product may not be in compliance with the new standard or regulation or could
fail to work when interacting with the changed system you have an interface with. If you
haven’t done the proper assessment of a requirement change at one level of the architecture,
there may be possible conflicts with requirements at higher or lower levels. If you don’t change
requirements to agree with the new stakeholder expectations, the wrong requirement may be
implemented.

• Requirements not allocated (flowed down)

Allocation is the process of apportioning resources or assigning responsibility for
implementation of requirements at one level to the parts at the next level of the system
architecture. All requirements need to be allocated until the final level of the architecture has
been defined.

Failing to allocate your requirements can result in requirements not being implemented at the
next level of the architecture. Failing to allocate requirements can also result in missing lower
level requirements (derived children requirements that are necessary and sufficient to meet the
parent requirement.) Often when a requirement is allocated to more than one part of the
architecture at the next level, an internal interface is needed. Thus, if that requirement was not
allocated, you could fail to identify an internal interface. Also, allocation, when combined with
traceability, allows you to do a complete change assessment of requirements in the levels
above and below the requirement that is changing. Failing to address allocation can result in
incomplete change assessment.

• Requirements not traceable to a parent

Traceability is the concept that all requirements need to be linked (traced) to their source,
referred to as their parent. Being able to trace to a parent, is one way to determine if a
requirement is needed. In cases where there is no trace to a parent, it could mean that the
requirement is not needed and gold plating is taking place. Gold plating is adding features to as
system that are not needed. Good plating is a source of requirements creep. Like requirements
that are not needed, gold plating can impact the cost and schedule of your project.

As stated above, traceability, when combined with allocation, allows you to do a complete
change assessment of requirements in the levels above and below the requirement that is
changing. Failing to address traceability can result in incomplete change assessment.

 12

Traceability also allows you to determine whether or not a parent requirement is being
properly implemented by allowing you to access whether or not the children requirements
linked (traced) to the parent requirement are necessary and sufficient to meet the intent of the
parent. Without both allocation and traceability, this assessment cannot be done.

Mitigating Requirement Risk

The defense against all these requirement risk factors is to clearly define your requirements
before beginning development. Do the best job you can to ensure you have a well written set
of requirements. To avoid the requirement risks discussed above, include the following in your
requirement development and management process:

• Define and enforce a requirement development process

• Follow the “Writing Good Requirements Checklist” (Contact Requirements Experts for a
copy.)

• Include key attributes: rationale, traceability, verification method, allocation, priority, risk

• Train your requirement writers, management, developers, testers, reviewers on how to
write defect free requirements

• Practice continuous requirement validation. Don’t allow defective requirements you’re
your requirement set. Project managers should not wait until the major milestone
reviews, especially the System Requirement Review (SRR), to find out they have a bad set
of requirements. There is always the danger that sub-par requirements will be baselined,
especially if there is a multitude of problems with the requirements at the SRR and the
schedule is tight. Baselining bad requirements always leads to wasted resources needed
to correct the requirements - putting the project at risk of schedule and budget overruns.

• Identify and manage requirement risk as stated above.

• Baseline Requirements (SRR) and have a firm change management process.

Requirement Management Risk
Requirement Management is the overall process that involves the development and validation
of your requirements, ensuring your requirements are allocated and traced, and managing
change. Requirement management does not happen by itself. Your team needs a well defined
process for accomplishing these activities as well as the necessary time and resources. The
following risk factors address the impacts of not following best practices involved in
requirements management.

Requirement Management Risk Factors

• No official process/process not followed

Not having an official process for managing requirements or having a process but the process in
not followed will result in wasted resources as well as all the scope and requirement risk factors
discussed earlier.

• Not enough time and resources allocated to define and baseline scope

Failing to allocate sufficient time and resources to define and baseline your project and product
scope will result in the scope risk factors discussed earlier. In addition, you will not have
defined and baselined a feasible concept that, when implemented, will meet stakeholder

 13

expectations. Not having a baselined scope will also result in constant change and scope creep,
impacting your cost and schedule.

• Not enough time and resources allocated to develop and baseline requirements

Failing to allocate sufficient time and resources to define and baseline your project and product
requirements will result in the requirement risk factors discussed earlier. In addition, the
direction to developers will be poorly communicated, ambiguous, incomplete, and inconsistent.
Not having a baselined set of good requirements will result in constant change and
requirements creep, again severely impacting your cost and schedule

• Poor change management

The result of not having or not enforcing a well-defined change management process can result
in uncontrolled change, scope creep, and requirements creep. Without some clear criteria for
which changes are allowed, defective and unnecessary requirements will get into your set of
requirements. You will be allowing change to control your project rather than you controlling
change. Uncontrolled change results in both unnecessary rework and unneeded work, both of
which will result in significant cost and schedule impacts as shown in Figure 2.

Managing Change

When you baseline your scope or requirements, you are defining a scope or requirement
bucket as shown in Figure 3. Your scope (stakeholder expectations) or requirements (technical
depiction of stakeholder expectations) are bound by cost, schedule, and technology. There is
always some risk associated with your ability to achieve what you have put into the bucket. By
baselining your scope and requirements you will have defined your scope and requirements
buckets. Managing change is managing these buckets.

Figure 3: The Requirement Bucket

If the current set of requirements exactly fits within the scope’s technology, cost, and schedule
boundaries then you will have a tool to manage change. What if someone wants to add

 14

additional requirements into the bucket? What is your response? One response is to not
accept additional requirements without increasing the boundaries (i.e. changing scope – asking
for addition funds and time to account for the added work.) Another response could be to take
out lower priority requirements from the bucket so the new requirements can be implemented
within your current budget and schedule. There is also the response that no manager wants to
hear – “No”. Saying “No” is not always a good response when considering one’s future. A more
politically correct response may be “Yes, but ……” Whatever your response, adding to the
bucket without making a change to the bucket will add risk and endangers the ability of your
project being able to deliver a winning product that meets stakeholder expectations.

A bit of advice. People keep coming to you for more and more. If you don’t say no, they will
keep asking. So if you are being a nice person and saying yes to every change being asked for,
you are going to get your project into a great deal of trouble. There is no reason for doing that.
The person asking you to do this, wants it, but doesn’t want to pay anymore and they don’t
want to wait any longer. The truth of the matter is you can’t keep adding things without
someone paying more or it taking longer than you originally planed. By saying yes all the time,
you are going to get your project in trouble and you are going to disappoint the customer. You
don’t have to tell them “no” all the time, but you have to be honest with them. You need to say
“Yes, we could add that, but if we do add that we are not going to be able to finish this project
on the date we promised – it is going to extend a week, a month, a year”. It is not possible to
just keep cramming it all in the bucket without risk. By saying yes, and meaning no, you are
creating many problems for yourself. So don’t just say no all the time, but explain yes, if you
are willing to slip the schedule, if you are willing to pay more, then we can do this – otherwise
we shouldn’t try to do it now. People understand this.

Mitigating Requirement Management Risk
As stated for both mitigating scope risk and requirement risk, the defense against all
requirement management risk factors is to follow the best practices stated. Do the best job
you can, the first time. To avoid the requirement management risks discussed above, include
the following in your requirement development and management planning:

• Allocate sufficient time and resources to define and baseline Scope before writing
requirements (Define your scope first, baseline and control it. This is absolutely the most
critical first step in the requirements process.)

• Allocate sufficient time and resources to develop and baseline requirements.

• Use requirement attributes to manage requirements.

• Develop and enforce a formal requirement development and management process.

• Train your team in your requirement development and management process.

• Manage change
o Do not baseline a bad document. Don’t say “its okay, we’ll go ahead and get started

and fix everything with change requests.”
o Put as much rigor in the baseline as in the changes that will follow. When someone

comes in with a change after your baseline, what information do you need? The
requirement, the rationale, and the impact. If you have this same rigor on the front-
end as you do after baseline, you will have a much better document.

 15

o “Design for change”. Adopt a design for change philosophy, e.g., design it so you can
make a change without having to recompile, size it for more volume or concurrent
users.

o Establish criteria for change. Clearly state which changes are appropriate and will be
considered and which type of changes are not appropriate and will be not be
considered. Remember the old saying “Better is the worst enemy to good enough.” In
this case good enough is meeting stakeholder expectations, gold plating is adding
features to make the product “better” when there is no requirement to do so, and by
doing so, your cost and budget could be impacted negatively.

Wrap up and Parting Thoughts
Having poor requirements will place your project at risk of significant cost overruns, schedule
delays, and performance shortfalls. Projects who fail to take effective actions to ensure a good
set of requirements triple their chances of project failure. The emphasis of this paper was to
identify common requirement development and management risks that can have an impact on
your project’s success, possible consequences of these risks, and strategies to mitigate the risks
and avoid the consequences of those risks. The case was made concerning the importance of
requirements from a risk mitigation standpoint and the importance of project management
ensuring a requirement development and management process is in place for their project and
their project team is trained in that process.

Failing to implement an effective requirement development and management process
represents a significant risk to your project’s ability to deliver a winning product. Therefore, all
project managers need to mitigate this risk from the beginning. Recognizing the fact that poor
requirements represent a significant risk to your project and mitigating these risks can triple
your chances of project success. What kind of a project manager would knowingly not
maximize their changes of project success?

In conclusion, avoid the risks associated with poor requirement development and management
practices by adopting the risk mitigation for each of the risk areas discussed in this paper and
adopt the following requirement development and management best practices for your
project:

• Address scope and requirement risk at the beginning of your project. Defining scope
results in understanding stakeholder expectations. If you don’t, you are setting your
project up for failure and probably will not be able to develop a product that meets
stakeholder expectations. It is worthwhile to do the best job up-front to ensure the scope
of your project is clearly understood, is feasible, is agreed to, and baselined. This results
in a firm foundation to develop and manage your requirements.

• Identify drivers and constraints and external interfaces as part of the scope definition
process. Develop operational concepts that are thoroughly thought out in the beginning
of a project to allow the writing of better and more comprehensive requirements. This
will eliminate rework and multiple recertification cycles later in the product lifecycle,
preventing cost overruns and schedule slips.

• Develop, implement, and enforce a formal requirement development and management
process that includes continuous requirement validation. This is critical during the initial
development push as well as during final requirement development and baselinging,

 16

development of the corresponding verification requirements, and managing your
requirements.

• Pay particular attention to your change management process. If you don’t control
change, change will control you. Changes to requirements result in design changes and
rework, which impact schedule and budget. Frequently, these design changes are larger
and more expensive than planned.

• Train your team and enforce the requirement development and management process
through project leadership. Do not only send team members to training, -- have them use
the language taught in training, set up processes to match what is presented during
training, and invest in either continual “refresher training” or provide a mentor to ensure
a learned behavior is followed by the team; the process must be learned and it does not
come naturally to most.

• Allocate the time and resources needed to do the job right – the first time. Small
investments early on will provide large dividends later in saved or avoided costs and
schedule slips.

• Clearly communicate to your team how important good requirements are to you and to
the success of the project. Never accept defective requirements. Reward team members
for doing a good job in developing and managing your requirements.

 17

References
1. Bennett, John T., DoD urges more training for requirements writers, December 27, 2010,

Federal Times.

2. CAI Requirements Development and Management, Seminar Workbook, February 2010,

Compliance Automation, Inc. 2010.

3. DOD, National Security Space Strategy Unclassified Summary, February 6, 2011

4. Ellis, Keith. Business Analysis Benchmark – The impact of Business Requirements on the

success of technology projects, IAG Consulting, 2008.

5. Moore, Jack, DoD Takes on Developing Weapons Requirements, Ending Creep, Dec 28,

2010, ExecutiveGov.

6. GAO-03-598, Matching Resources with Requirements Is Key to the Unmanned Combat Air

Vehicle Program’s Success, United States General Accounting Office, June, 2003.

<http://www.gao.gov/new.items/d03598.pdf>.

7. Hooks, I. F. and Farry, K. A., Customer-Centered Products: creating successful products

through smart requirements management; AMACOM Books, NY, NY, 2001.

8. INCOSE, Systems Engineering Handbook - a guide for system life cycle processes and

activities, Version 3.1, INCOSE-TP-2003-002-03.1, August 2007, ed, Cecilia Haskins.

9. ISO/IEC 15288, System Engineering-System Life Cycle Processes, October 2002.

10. NASA OIG, Inspector General, NASA’s Most Serious Management and Performance

Challenges, Report, November 2008.

<http://oig.nasa.gov/NASA2008ManagementChallenges.pdf>.

11. NASA, System Engineering Handbook, SP-2007-6105, Rev. 1, December 2007.

<http://education.ksc.nasa.gov/esmdspacegrant/Documents/NASA%20SP-2007-

6105%20Rev%201%20Final%2031Dec2007.pdf>.

12. NASA, Systems Engineering Processes and Requirements, NPR 7123.1A, March 2007

<http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7120_005D>.

13. NASA, Space Flight Program and Project Management Requirements, NPR 7120.5D,

March 2007. <http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7120_005D>.

14. NASA, Space Flight Program and Project Management Handbook, NPR 7120.5, February

2010.

< http://www.nasa.gov/pdf/423715main_NPR_7120-5_HB_FINAL-02-25-10.pdf >.

15. Software Engineering Institute, CMMI for Development – Improving processes for better

products, Version 1.2, CMMI Product Team, Carnegie Mellon, August 2006.

16. The Standish Group Report, CHAOS Chronicles, 1995 and 2003

17. Wheatcraft, L. S. and Hooks, I. F., Scope Magic, 2001.

<http://www.complianceautomation.com>.

18. Wheatcraft, L. S. The Importance Of Scope Definition Prior to Developing Space System

Requirements. INCOSE INSIGHT, Vol. 4 Issue 4, January 2002.

<http://www.complianceautomation.com>.

19. Wheatcraft, L. S. Delivering Quality Products That Meet Customer Expectations. Published

in CrossTalk, The Journal of Defense Software Engineering, January 2003, Vol. 16 No. 1.

<http://www.complianceautomation.com>.

20. Wheatcraft, L. S. Developing Requirements for Technology-Driven Products. Presented at

INCOSE 2005, July 2005. <http://www.complianceautomation.com>.

http://www.federaltimes.com/article/20101227/ACQUISITION02/12270301/1001
http://www.spaceref.com/news/viewsr.html?pid=36014
http://www.executivegov.com/2010/12/dod-takes-on-developing-weapons-requirements-ending-creep/
http://www.gao.gov/new.items/d03598.pdf
http://oig.nasa.gov/NASA2008ManagementChallenges.pdf
http://education.ksc.nasa.gov/esmdspacegrant/Documents/NASA%20SP-2007-6105%20Rev%201%20Final%2031Dec2007.pdf
http://education.ksc.nasa.gov/esmdspacegrant/Documents/NASA%20SP-2007-6105%20Rev%201%20Final%2031Dec2007.pdf
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7120_005D
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7120_005D%3e
http://nodis3.gsfc.nasa.gov/displayDir.cfm?Internal_ID=N_PR_7120_005D%3e
http://www.complianceautomation.com/
http://www.complianceautomation.com/
http://www.complianceautomation.com/
http://www.complianceautomation.com/

 18

BIOGRAPHY
Lou Wheatcraft is a senior consultant and managing member of Wheatland

Consulting, LLC. Lou is an expert in systems engineering with a focus on

needs and requirements development, management, verification, &

validation. Lou provides consulting and mentoring services to clients on the

importance of well-formed needs & requirements helping them implement

needs & requirement development and management processes, reviewing

and providing comments on their needs and requirements, and helping

clients write well-formed needs & requirements.

Specialties include: Understanding and documenting the problem; defining project & product

scope; defining and maturing system concepts; assessing, mitigating, & managing risk;

documenting stakeholder needs; transforming needs into well-formed design input requirements;

allocation, budgeting, and traceability; interface management, requirement management; &

verification and validation.

Lou’s goal is to help clients practice better systems engineering from a needs & requirements

perspective across all life cycle stages of system/product development. Getting the needs &

requirements right upfront is key to a successful project. Poor needs & requirements can triple

the chances of project failure.

Lou has over 50 years’ experience in systems engineering, including 22 years in the United

States Air Force. Lou has taught over 200 requirement seminars over the last 19 years. Lou

supports clients from all industries involved in developing and managing systems and products

including aerospace, defense, medical devices, consumer goods, transportation, and energy.

Lou has spoken at Project Management Institute (PMI) chapter meetings and INCOSE

conferences and chapter meetings. Lou has published and presented many papers concerning

requirement RD&M topics for NASA’s PM Challenge, INCOSE, INCOSE INSIGHT Magazine,

and Crosstalk Magazine. Lou is a member of INCOSE, Past Chair and current Co-Chair of the

INCOSE Requirements Working Group, a member of the Project Management Institute (PMI),

the Software Engineering Institute (SEI), the World Futures Society, and the National Honor

Society of Pi Alpha Alpha.

Lou has a BS degree in Electrical Engineering from Oklahoma State University; an MA degree

in Computer Information Systems; an MS degree in Environmental Management; and has

completed the course work for an MS degree in Studies of the Future from the University of

Houston – Clear Lake.

	Risk and Requirements
	Effect of Requirements Definition Investment on Program Costs
	A Winning Product vs. Risk

	Scope Risk
	Scope Risk Factors
	 Failure to define Scope
	 Failure to define Need, goals, and objectives
	 Failure to involve relevant stakeholders
	 Failure to identify drivers and constraints
	 Failure to define a feasible concept to meet the stakeholder needs
	 Failure to define product boundaries and external interfaces
	 Failure to baseline scope before writing requirements
	 Mitigating Scope Risk

	Requirement Risk
	Requirement Risk Factors
	 Requirement not necessary
	 Requirement not verifiable
	 Requirement not attainable
	 Requirement can be understood more than one way
	 Requirement(s) incomplete
	 Requirement reflects implementation
	 Requirement(s) subject to change
	 Requirements not allocated (flowed down)
	 Requirements not traceable to a parent

	Mitigating Requirement Risk

	Requirement Management Risk
	Requirement Management Risk Factors
	 No official process/process not followed
	 Not enough time and resources allocated to define and baseline scope
	 Not enough time and resources allocated to develop and baseline requirements
	 Poor change management
	Managing Change

	Mitigating Requirement Management Risk
	Wrap up and Parting Thoughts
	References
	BIOGRAPHY

