20 Resource Allocation Decisions

Don N. Kleinmuntz

ABSTRACT. Organizations typically have more good ideas for projects than they
have resources available to pursue those ideas. Decision analysis can provide prac-
tical guidance to the organization on how to get the maximum benefit from those
limited resources. This chapter reviews methods for prioritizing projects using
mathematical optimization or benefit-cost ratios in concert with standard decision-
analysis and risk-analysis tools. These tools include multiattribute utility and value
models, decision trees, influence diagrams, and Monte Carlo simulation. To illus-
trate issues that arise in implementing these approaches in organizations, the use
of resource allocation models in hospital capital budgeting is described at length.
The chapter concludes with a call for more research on the use of decision analysis
in organizational settings.

The Challenge of Organizational Resource Allocation

What universal dilemma is confronted by organizations of every size, type, and
purpose? Stated simply, they have more good ideas for projects, programs, and
investments than they have resources available to pursue those ideas. These ideas
include facilities expansion or construction, new equipment, innovative manufac-
turing or service delivery technologies, and information technology upgrades. In
addition, many organizations engage in research and development efforts that
require identifying the most promising new products, technologies, or process
improvements.

Often, the limiting resource is financial because an organization’s capacity to
borrow funds or raise equity capital has practical limits. There also may be insuffi-
cient facility capacity, or not enough time to pursue every idea. In other instances,
specialized skills or expertise are the limiting factor. An important example of
limited expertise occurs when executives lack the time to oversee the implemen-
tation of too many projects. Whatever the resource limitations, the implication is
that projects cannot be considered in isolation. Choosing one project implies that
fewer resources will remain for the rest. As a consequence, poor choices lead to
high opportunity costs as the organization squanders scarce resources.

Most organizations engage in some type of regular capital budgeting or project
portfolio selection process. Plans are evaluated and decisions made about which
projects to pursue and which to either reject or postpone. Although these pro-
cesses are as varied as the organizations that pursue them, there are common
elements shared across many settings: First, the lists of plans and proposals are
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dauntingly long, measured in the dozens, hundreds, or even thousands, depending
on organization size. Second, no one person can possibly have a complete under-
standing of each and every project, with relevant information spread across many
individuals. Finally, there is the ever-present temptation for organizational stake-
holders to scramble to exert influence to secure resources for favorite projects. In
part, this reflects the narrow pursuit of self-interest. All too often, however, not
even top-level decision makers have a clear picture of which projects are in their
organization’s best interest, and this confusion leads to uncertainty and conflict.

Given these challenges, there is a clear role for analytical tools and processes
to improve organizational resource allocation. The purpose of this chapter is to
provide an overview of decision analysis approaches to resource allocation and
an extended description of the use of resource allocation methods in a particular
setting, capital budgeting in U.S. not-for-profit hospitals. Rather than attempting a
comprehensive review of resource allocation applications, I have tried to provide
representative examples. Additional applications are reviewed by Corner and
Kirkwood (1991) and by Keefer, Kirkwood, and Corner (2002, 2004).

The remainder of the chapter is organized as follows: First, a mathematical
optimization framework for resource allocation is introduced. This is followed by
a description of two categories of decision analysis models that are used in concert
with the optimization framework: Multiattribute utility and value models are used
in situations where project benefits are defined over multiple objectives, and deci-
sion trees, influence diagrams, and Monte Carlo simulations are used where there
are significant uncertainties regarding project benefits and costs. Next, I describe
implementation of resource allocation models in hospital capital budgeting and
discuss some issues that arise in practice. I conclude with a call for more research
on the organizational implementation of decision analysis models and methods.

Capital Allocation Using Mathematical Optimization

Financially oriented capital budgeting approaches are well developed and have
been described in many texts and references (see, for example, Bierman and
Smidt 1993; Brealey and Myers 1996; Canada, Sullivan, and White 1996; Lang
and Merino 1993; Luenberger 1998). The classic financial approach uses dis-
counted cash flows to evaluate projects, based on forecasts of incremental cash
flows required to acquire, operate, and then dispose of each plan or project. The
cash-flow forecasts are almost always presented as point estimates, although they
may be based on extremely detailed deterministic financial models.

Because financial benefits accrue over some period of time, they are almost
always measured using a net present value calculation. In most business settings,
the discount rate used in this calculation represents the average amount that the
organization must pay to obtain funds (i.e., the opportunity cost associated with
making the investment). If an organization has no limit on its ability to obtain
capital and is concerned only with financial return, then it should accept any
project with a positive net present value. However, with limited access to capital,
there is a problem of capital rationing: the organization wishes to obtain as much
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benefit as possible while spending no more than the available amount of capital.
This is readily modeled with a binary integer programming formulation (for an

early discussion, see Weingartner 1963).

The formulation is not complicated: suppose an organization is considering
a set of m proposed capital expenditures, and the only decisions to be made are
with regards to funding (“yes” or “no”) for each project. Let ¢; denote the cost to
develop the project (¢; > 0fori=1tom).! Let b; denote the net present value of
project benefits (b; > 0 fori =1 to m). Let x; represent a binary decision variable
for each project (x; = 0 or 1 for all i). Finally, let C denote the budgeted amount
available to fund project costs. The objective is to maximize aggregate benefits

while staying within the budget constraint:

m
maximize ) b;x;
i=1
subject to
m
Z cx, <C
i=1
xi=0orl),i=1,...,m

This model assumes that neither benefits nor costs of a project depend on which
other projects are selected, with the implication that both benefits and costs are
additive. Solution techniques and optimization software for solving these models
are readily available, and are described in most operations research textbooks

(e.g., Hillier and Lieberman 2005).

An intuitively appealing alternative to optimization is to rank projects using
benefit-cost ratios (b;/c;) or the closely related profitability index ((b; — c;)/c;).
Projects are prioritized by selecting the highest-ratio projects until funds are
exhausted. This approach produces the highest value for the amount spent, but
may not spend all available funds. If there are less costly projects with nearly the
same ratio values as the last projects funded, then substituting these may produce
higher aggregate benefit. However, in practical settings, sorting on benefit—cost
ratios often produces a reasonable heuristic solution with only a small deviation

from the aggregate benefit achievable through optimization.

One advantage to mathematical programming formulations are that they can
be readily extended to allow for additional resource limitations or project depen-
dencies that arise with large, complex projects. For instance, the organization
might consider projects requiring funds over multiple time periods, with limited
funds available for each period. Extending the formulation requires an additional
budget constraint for each time period. Similarly, accounting for other limited
resources (e.g., human resources or suitable facilities) is accomplished by adding

constraints to enforce those limitations.

A form of project dependency that arises in many settings is mutual exclusivity
of project choices. For instance, when considering alternative versions of the same

1 For simplicity of exposition, assume that all project expenditures take place in one year, and

that the organization only considers capital allocation one fiscal year at a time.
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project, choice is restricted to at most one version of the project. Suppose the set
S represents a subset of projects that are mutually exclusive (S C {1,...,m}). A
constraint of the form ), _¢x; < 1 permits selection of no more than one project
from the set of mutually exclusive projects, with the possibility that none would
be selected. A constraint of the form ), _¢x; = 1 requires selection of exactly one
project from the set.

In other instances, projects are contingent, meaning that one project can be
chosen only when a second project is also selected. An example is a computer
software purchase that is only feasible if necessary computer hardware compo-
nents are acquired simultaneously. If project i is contingent on project &, then the
constraint would be x; — xx < 0. If projects are mutually contingent, then one can
be chosen if and only if the other is chosen, requiring a strict equality constraint:
xX; —x,=0.

Sometimes, it is convenient to treat contingent projects as a single project with
combined costs and benefits. However, unless there is mutual contingency, this
requires introducing mutual exclusivity, to allow for scenarios where one wishes to
acquire one project but not the other. For instance, when considering constructing
a new office building, one might consider a new parking garage as contingent
on the construction of the offices, if the garage would have no useful purpose
without the new offices. Alternatively, one could consider “office building” versus
“office building plus garage” as mutually exclusive projects if this will make the
assessment of benefits and costs more convenient.

Almost any of these extensions to the basic model renders the use of benefit—
cost ratios problematic. For instance, with multiple resource constraints, it is not
clear which resource to use as the denominator in the benefit—cost ratio because
one cannot know in advance which will be the limiting resource. Further, as depen-
dency constraints become more numerous, sorting on ratios is unlikely to produce
a solution consistent with all the constraints. Under these circumstances, mathe-
matical optimization is the only practical approach.

One context where mathematical optimization has been used extensively is
the analysis of U.S. military procurement decisions, such as the acquisition of
military weapons systems. Brown, Dell, and Newman (2004) provide an excellent
overview and key references. These decisions routinely involve allocating billions
or trillions of dollars over years or decades. According to Brown and colleagues,
a number of modeling “embellishments” are essential to capture the realities of
the setting: (1) Decision variables involve both whether to acquire a particular
weapons system, and, if the system is acquired, the number of units required. (2)
Both benefits and costs may be nonlinear in the number of units procured, usually
modeled using piecewise linear functions. (3) Certain funds may be restricted as to
when they may be spent and what they may be spent on, requiring constraints for
different “flavors” of money. (4) Project benefits from multiple systems are greater
(or less) than the sum of the parts, requiring multiplicative interaction terms in
the benefit functions. (5) Budgets must allow for many years between acquisition,
development, and deployment of a system, requiring a series of constraints to
reflect these dynamics. (6) Other dynamic consideration include both year-by-year
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and cumulative resource limitations, overhaul and retirement decisions for older
equipment, and mission-related requirements for either sequential or concurrent
availability of specific weapon systems. One consequence of these complications is
that models may have thousands of decision variables and constraints. Solutions,
therefore, require a combination of serious computing power and ingenuity in
both model formulation and computational methods.

Measuring Project Benefits Using Multiattribute Value Models

One of the most obvious differences between military procurement and business
settings is the way in which project benefits are measured. In for-profit business
entities, discounted net present value is generally considered the “gold standard”
metric. Because the organization’s fundamental objective is generally regarded
as maximizing the value of the owners’ investment, in the world of corporate
finance, this metric has both a clear theoretical rationale and practical relevance.
However, in government and not-for-profit entities, the organization’s objectives
are not exclusively focused on financial value.

Multiattribute utility and value models provide a methodology for evaluating
project and program benefits in light of multiple conflicting objectives (Keeney
1992; Keeney and Raiffa 1976). An early application of multiattribute value mod-
els to resource allocation is reported by Golabi, Kirkwood, and Sicherman (1981).
They propose an optimization framework identical to the one described above,
except that project benefits are assessed using multiple evaluation criteria. Golabi
and colleagues propose the application of this methodology to government pro-
curement, and describe using it to assist the U.S. Department of Energy in selecting
a portfolio of solar energy application experiments.

In particular, they propose using a linear-additive multiattribute value func-
tion. Suppose there are n evaluation attributes (denoted y;; for projecti =1 to
m and evaluation attribute j = 1 to n). The benefit measure is a weighted value
score (denoted b} for project i), a weighted average of the benefit assessed on
each attribute:

br ="y wiv;(y).
j=1

Each function v; (-) is a single-dimensional measurable value function (also known
as an ordinal utility function) that represents a decision maker’s preference for
performance differences on a single attribute, scaled to a standard range (e.g., from
0to1). The w; parameters are weights that capture a decision maker’s assessment
of the relative importance of the evaluation attributes over the range of values
observed for the particular set of candidate projects, typically scaled to sum to 1.

Applying this approach to project portfolios requires the usual preference
independence assumption for the linear-additive form of the value function (see
also Keeney and Raiffa 1976), and additional assumptions to obtain additivity of
project values across the portfolio. The latter assumptions permit project benefits
tobe measured one project at a time, which simplifies the application of the method
significantly. Although Golabi and colleagues carefully tested and examined the
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validity of the independence and additivity assumptions, most applications simply
apply linear additive project scoring methods without rigorous testing. These
can be ad hoc scoring systems or simplified multiattribute value models familiar
to many decision analysts, such as SMARTS, the Simple Multiattribute Rating
Technique using Swings (see Edwards and Barron 1994; see also Clemen 1996,
chapter 15; or Kirkwood 1997, chapter 4). The project scores are then used to pri-
oritize and select projects, either using integer programming or benefit-cost ratios.
The optimization formulation is the one described above, except that weighted
value scores (b}) replace financial benefit measures (b;). Net present value (or
some other financial metric) is not neglected, but rather, is often included as an
attribute.

This approach has been widely applied to public programs and policy issues
(e.g., analyzing alternative technologies for military programs, Burk and Parnell
1997; Parnell, Conley, Jackson, Lehmkuhl and Andrew 1998). However, these
methods are not only for public sector applications. A case can be made for apply-
ing them in for-profit organizations, where exclusive reliance on financial metrics
for enterprise performance can lead to neglect of other relevant strategic consid-
erations (Kaplan and Norton 1996; Keeney 1999; Keeney and McDaniels 1999).
In these settings, resource allocation models can help to connect strategic issues
with decisions about specific portfolios of projects and plans. Multiattribute value
models provide a template for a sound and efficient resource allocation process
that considers the full range of organizational objectives, including objectives that
are not suitably evaluated using standard financial metrics.

The use of multiattribute approaches is particularly appropriate for resource
allocation in private, not-for-profit enterprises, where there are clearly multiple
objectives at work. These not-for-profit organizations combine the need for finan-
cial discipline typical of for-profit enterprises with the rich set of mission-related
objectives found in government and military settings. A multiattribute value
model provides a direct means for the organization to consider trade-offs between
financial and nonfinancial objectives, often a crucial concern. For instance, Klein-
muntz and Kleinmuntz (1999) describe the use of multiattribute value models to
allocate capital resources in not-for-profit hospitals. The method closely follows
the multiattribute value modeling approach discussed above, using integer linear
programming to identify the best portfolio of projects subject to resource lim-
itations and other constraints. Practical considerations in using these models in
hospital settings will be discussed at some length in the next-to-the-last section.

Resource Allocation with Uncertain Benefits and Costs

A significant concern in many settings is that projections of both project ben-
efits and project costs are uncertain. In businesses, organizations often cope
with this problem by “risk adjusting” the valuation of projects. They do this
by calculating net present values using a discount rate that is higher for riskier
projects and lower for less risky projects. Methods for selecting project-specific
discount rates are discussed in corporate finance textbooks, but in practice,
these risk adjustments usually amount to little more than subjective judgments
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about each project’s perceived risk. This is potentially defensible as a heuristic
approach when compared with the use of point estimates with no consideration
of uncertainty. However, these perceived risk judgments are problematic from a
normative decision perspective because they reflect an unsystematic assessment
influenced by both the relevant probability distributions over outcomes as well as
the organization’s risk tolerance.

Most decision analysts avoid project-specific discount rates by implementing
systematic models of project uncertainties using standard approaches (decision
trees, influence diagrams, or Monte Carlo simulations) and applying a uniform
discount rate for all projects. The remaining challenge, then, is to incorporate the
resulting project risk profiles into the portfolio optimization. The most common
approach is to assume that the organization is risk neutral over the relevant range
of portfolio outcomes. Risk neutrality implies that only expected values of project
benefits and costs are relevant, and that the objective is to maximize expected ben-
efits subject to resource and other constraints. Therefore, expected values replace
deterministic forecasts when using either benefit-cost ratios or mathematical opti-
mization for prioritization.

A complicating issue arises if project resource expenditures are uncertain
because portfolio solutions are no longer guaranteed to be within resource con-
straints. Solving for optimal portfolios with stochastic constraintsis a rapidly devel-
oping research area, but the analytical and computational burdens can be con-
siderable (see, for instance, Birge and Louveaux 1997). A widely used pragmatic
alternative is to reserve a contingency allocation of the scarce resource sufficient
to provide for potential overruns.

One area where decision analysis tools have been frequently applied is selec-
tion of research and development (R&D) projects, such as the development
of new products, processes, or technologies. R&D project portfolios have been
addressed using a wide variety of tools and methods (see review by Henrikson
and Traynor 1999). Decision and risk analysis have been particularly successful
because the uncertainties associated with an R&D project typically loom quite
large. In the initial stages, there is considerable uncertainty regarding both the
time and resources required to pursue the project, and technical success is a
major risk factor. Conditional on meeting technical objectives at various stages,
there are also significant uncertainties regarding the size and duration of realized
benefits. Published examples of applications are provided by Bodily and Allen
(1999), Matheson and Matheson (1998, 1999), Poland (1999), and Sharpe and
Keelin (1998).

Another area where decision analysis has been fruitfully applied is in selec-
tion and management of portfolios of petroleum and natural gas producing assets.
The uncertainty associated with oil exploration is quite familiar to decision ana-
lysts (Raiffa 1968). Walls (2004) reviews portfolio management issues that arise
when considering a large number of exploration options. Skaf (1999) describes
a comprehensive portfolio system that was implemented at a major oil and gas
company to support management of both exploration activities and existing pro-
ducing assets.
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An active area for research and application in recent years has been combin-
ing financial options pricing tools with standard decision analysis tools (Perdue,
McAllister, King and Berkey, 1999; Smith and McCardle 1998; Smith and Nau
1995). Most risky projects are not simply “go versus no-go” decisions because man-
agers have flexibility to adapt and make subsequent decisions as a project devel-
ops over time (e.g., abandon if anticipated benefits do not materialize or expand if
prospects improve). Both decision analysis and options pricing methods are capa-
ble of accounting for uncertainty and managerial flexibility when valuing projects.
However, options pricing methods are based on the no-arbitrage theory of finan-
cial markets, whereas standard decision analysis methods do not distinguish
between uncertainties associated with market-traded assets versus uncertainties
unrelated to financial market prices. Although these methods have sometimes
been positioned as competitors (Copeland and Antikarov 2005), the argument
that they should be viewed as complements is compelling because projects often
have uncertainties both with and without financial market equivalents (Borison
2005a, 2005b). Methods and tools for synthesizing the two approaches are not yet
widely disseminated. This may be because they are unfamiliar to decision analysts
or may be because they are challenging to implement in a fashion that is both rig-
orous and accessible (Branddo, Dyer and Hahn 2005a, 2005b; Smith 2005). The
convergence of methods from decision analysis and financial engineering is an
important and promising area for further research.

Another promising area for research is optimal resource allocation in the pres-
ence of risk aversion. Relaxing the assumption of risk neutrality greatly increases
the complexity of resource allocation for two reasons: First, as a general rule,
nonlinear preference functions imply that project benefits are no longer strictly
additive because the incremental benefit of any single project depends on the
aggregate benefits achieved by the rest of the portfolio. This requires shifting
from linear to nonlinear programming formulations for optimization, which can
be conceptually straight-forward but computationally challenging for larger port-
folios. An exception applies if an assumption of constant risk aversion is plausible,
in which case an exponential utility function can be used to compute certainty
equivalents that account for risk tolerance without violating additivity. As a case
in point, Walls, Morahan, and Dyer (1995) describe a decision support system
that Phillips Petroleum Company implemented to analyze oil and gas exploration
projects. The system gave the user the ability to model uncertainties for individ-
ual projects and compute certainty equivalents based on an exponential utility
function. It was used successfully for both project selection and to evaluate risk-
sharing opportunities. Walls and colleagues report that this system gave managers
the ability to rank projects and stay within budgets while enforcing a consistent
level of risk tolerance across the company.

The second and more serious issue with deviations from risk neutrality is
that computing the risk profile of aggregate benefits over an entire portfolio
requires assessment of joint distributions over outcomes of multiple projects.
Because projects are often probabilistically dependent, this requires assessing
the nature and degree of dependence. One method for doing this is to use copula
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functions, which require marginal probability assessments and pairwise correla-
tions (Clemen and Reilly 1999; Yi and Bier 1998). An alternative approach is
based on information theoretic entropy methods that require both marginal and
pairwise probability assessments (Abbas 2003, 2006; Jaynes 1968; Lowell 1994;
MacKenzie 1994; Smith 1995). One implication of probabilistic dependence is
that learning about the outcome of one project may lead to revision of assessed
probabilities for another project. This can be particularly important in situations
where projects are selected sequentially. Bickel and Smith (2006) have devel-
oped an approach that combines entropy methods with dynamic programming to
determine an optimal sequence of projects, and have applied the approach to the
sequential exploration of oil and gas projects.

Recently, Gustafsson and Salo (2005) have proposed a general modeling
framework and methodology called Contingent Portfolio Programming to sup-
port the selection of a portfolio of projects or investments where the outcomes
of the projects are uncertain and there are dynamic considerations in the evolu-
tion of both project uncertainties and project values. Their approach also includes
a method for taking into account risk attitudes using a risk-value model or a
multiattribute value function. The approach combines various elements of other
approaches within a comprehensive modeling approach, and appears to be compu-
tational feasible for many R&D portfolio problems. Gustafsson (2005) discusses
extensions and proposes some promising applications, particularly for analyzing
investments that have both financial market and other uncertainties.

The applications discussed so far in this section all involve only a single finan-
cial objective. When multiattribute utility models were a relatively recent discov-
ery, there were a number of reported applications that explicitly analyzed both
uncertainty and multiple objectives when selecting project portfolios and allocat-
ing scarce resources (Crawford, Huntzinger, and Kirkwood 1978; Keefer 1978;
Keefer and Kirkwood 1978; Sarin, Sicherman and Nair 1978). These applications
appear to have been successful, but more recent reports of this type are nonexis-
tent. Although it is possible that these methods are being used but have not been
published, I believe that it is more likely that the implementation is too burden-
some for most organizations. Instead, they focus on either uncertainty or multiple
objectives, depending on what is more relevant to their situation. One promis-
ing recent development that may help is a robust modeling approach that permits
analysis of project portfolios with incomplete information on project performance
or decision maker preferences (Liesio, Mild, and Salo, in press).

As models get more complex, there is a danger that they will be treated as
a mysterious “black box” by decision makers, who will be reluctant to rely on
them. One analytic strategy that is frequently implemented in practice but rarely
discussed in the literature is to approximate complex models with relatively sim-
ple linear models. For example, Dyer, Lund, Larsen, Kumar, and Leone (1990)
describe a decision support system developed to prioritize oil and gas exploration
activities subject to limits on the available teams of geologists and geophysicists.
They develop a linear multiattribute value model designed to closely replicate a
more complex nonlinear model derived from conventional calculations of value
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of information. Dyer and colleagues note that the simplicity and transparency
of the linear model eased both implementation and acceptance of the model by
the decision makers. More research on the performance of all sorts of simplified
approaches would help to promote informed decisions about model sophistication
when deploying systems for resource allocation.

Hospital Capital Budgeting: Lessons from Practice

This last point suggests that there can be a delicate balance between conceptual
and methodological rigor on the one hand and the pragmatic requirements of
resource-constrained organizations. In order to illustrate, I will focus at length on
the application of these methods to a particular domain, capital budgeting in not-
for-profit hospitals and multihospital healthcare systems. This context provides
an excellent case study of the realities of model implementation in large, complex
organizations.

Capital budgeting is an ongoing challenge for hospitals in the United States.
Rapid technology advances, an aging population, and a shifting competitive envi-
ronment create constant needs to acquire or replace equipment, maintain and
expand physical infrastructure, improve quality of care, and offer new service
lines. At the same time, financial pressures sharply limit what they can afford
but increase certain needs, particularly for investments that generate revenues
or improve operational efficiency. As a consequence, hospitals often enter their
annual budgeting cycle with requests for funds that exceed capital available by
a factor of three or more to one. Because only a small fraction of requests can
be approved, the process is difficult, as executives struggle to identify the best
projects.

To support this process, Strata Decision Technology (Strata), a company that
I cofounded with Catherine Kleinmuntz in 1996, has developed a software sys-
tem called StrataCap® that includes analytical capabilities based on the multiat-
tribute value modeling and optimization approach discussed earlier. The software
is designed to combine financial forecasts and assessment of other evaluation crite-
ria within a consistent, logical framework for capital project evaluation. Although
the project evaluation and portfolio optimization capabilities can be duplicated
with “off-the-shelf” analytical software (or even with spreadsheets), there is also
considerable integrated functionality to support other parts of the capital bud-
geting process. This includes standardized project proposal forms, an interactive
proposal review and approval process, integration with email systems to support
collaboration and workflow, and the ability to effectively integrate the system with
other information systems internal and external to the organization.

Strata has implemented this software and the associated capital budgeting
process hundreds of times in not-for-profit hospitals and multihospital health-
care systems across the United States. These organizations range in size from
seventy-five-bed community hospitals to major academic medical centers and
multihospital healthcare systems comprising anywhere from two to more than
forty hospitals each. Including the affiliates of multihospital systems, the approach
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Table 20.1. Implementation process for hospital capital budgeting

1. Advance preparation and communication: [1 week]
* Review existing capital process
¢ Define goals and objectives for budget process
¢ Establish project timeline, milestone dates, team members, and roles
¢ Define standardized capital request form
¢ Define structured organizational review process
¢ Present finalized recommendations to senior management for approval

2. Software configuration and training: [1 week]

¢ Configure software to organization’s specifications

¢ Train hospital budget coordinator on software administrative functions

¢ Train hospital managers and program directors on writing high-quality capital

requests

¢ Train senior managers with proposal review responsibility on how to qualify
proposals
Familiarize senior management with relevant steps of the capital request and
evaluation processes

3. Capital requests entered into system: [4 weeks]
¢ Create business plans that justify needs and address anticipated questions
¢ Analyze incremental financial impact of capital request on existing operations
¢ Import external medical technology assessment data to support equipment
selection and pricing analyses

4. Discussion and review of proposals by senior managers and functional experts:
[4 weeks]
¢ Examine requests for accuracy and completeness
¢ Assess functional feasibility and necessity of request.
¢ Provide management sign-off prior to evaluation
* Reviewers communicate with proposal writers through online discussion forum

5. Senior leadership team prioritizes capital requests: [1 day]
¢ Team composed of executive-level managers, including clinical/physician leadership
¢ Focused discussion of proposals based on identified financial and qualitative criteria
e Score proposals on qualitative criteria
¢ Establish trade-off weights based on strategic considerations
¢ Prioritize capital requests using optimization tool and benefit-cost ratios

has been used in more than 750 hospitals and healthcare provider organizations,
in some instances for many years.

In tandem with the software implementation, Strata provides consulting ser-
vices to facilitate the capital budgeting process. A team of two or three consultants
guide the organization through a process that starts with a review of existing bud-
geting practices and culminates in a meeting where the senior leadership team
prioritizes requests and arrives at a portfolio recommendation. Over time, Strata
consultants have identified best practices for the implementation process (summa-
rized in Table 20.1). In a typical hospital, the entire process will take approximately
ten weeks.

The process is designed to emphasize the evaluation criteria that will ulti-
mately guide the decisions. Five evaluation attributes usually cover the major
issues of concern to most hospitals (summarized in Table 20.2). These include an
attribute related to financial performance (net present value), three related to
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Table 20.2. Standard attributes for capital evaluation

Objective Attribute Definition

Financial NPV Net present value of projected future cash flows
(dollars)

Quality Clinical impact Improves clinical experience in terms of outcomes,

patient safety, waiting times, throughput times, and
general comfort (rating from O to 100)

Infrastructure Improves or maintains quality of hospital and outside
facilities and equipment, including expenditures to
comply with safety, code, and accreditation standards
(rating from O to 100)

Staff/physician Improves ability of employees and medical staff to
relationships work effectively and productively (rating from O to 100)
Strategy Market share Enhances market share by increasing the number of

patients seen and/or increasing ability to attract new
patients (rating from O to 100)

quality concerns (clinical outcomes, facility quality, and impact on staff and physi-
cians), and one addressing strategic concerns (market share). Although the con-
sultants encourage modifications or additions based on an organization’s unique
objectives, they also discourage letting the attribute list grow too long because
this tends to make the evaluation process more difficult.

The capital evaluation session represents the culmination of the entire process.
In a typical hospital, there might be 250 proposals submitted, but only 40 to 50 of
the most costly are evaluated by the senior executives, representing 70-80 percent
of the requested funds. For the remaining proposals, funding decisions are made by
reserving allocation pools for groups of functionally related proposals and letting
the relevant functional managers assign those funds as they see fit. Sometimes,
these managers also use the software to prioritize the smaller projects. In large
multihospital organizations, a similar size-based partition of projects occurs, with
the largest projects evaluated by corporate executives and the remaining projects
evaluated by local hospital executives.

The senior executive evaluation team usually comprises six to twelve members,
including the Chief Operating Officer, Chief Financial Officer, Director of Patient
Care, Director of Materials Management, Chief Information Officer, Director of
Facilities, and physician representatives. The Chief Executive Officer only some-
times elects to participate. The ideal team represents a cross section of expertise
and interests from across the organization.

The evaluation session generally lasts between 4 and 6 hours, with a senior con-
sultant from Strata acting as facilitator. The entire analysis occurs in real time with
the evaluation team present. The session is usually held in a location where each
evaluator has access to a networked computer. The facilitator starts with a brief
review of the evaluation process and guidelines for proposal discussions. Many
organizations have managers or directors (the project champions) present each
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proposal and answer questions. Evaluators then immediately score each request
on each evaluation criterion using a 0 to 100 judgment scale.? Three to five minutes
are allocated to discussion and scoring of each proposal. Once presentations are
done, evaluators review their ratings and make any necessary adjustments.

Next, the facilitator helps the team determine the relative weights to be
assigned to the evaluation criteria and uses the software to calculate aggre-
gate scores and determine the optimal allocation of the available capital dollars.
The budget constraint is usually provided by the Chief Financial Officer in advance
of the meeting. The facilitator then explains the results and conducts sensitivity
analyses based on questions and comments from the evaluation team. The goal of
this discussion is to provide the evaluation team with a clear understanding of the
modeling process and why the results turn out as they do. The session concludes
after the team has converged on a final list of approved capital requests.

Because the system uses optimization, benefit-cost ratios are not an explicit
part of the solution process. However, they are still useful because sorting the
list of projects using the ratio provides insight into why some projects are or are
not included in the optimal portfolio — the projects at the top of the list are clear
winners, providing high benefit per dollar expended. Projects at the bottom of the
list provide benefits at too high a cost. The discussion naturally focuses on projects
in the middle, where slight changes in either benefit or cost estimates could easily
alter recommendations.

A particularly useful form of sensitivity analysis is to “force” a proposal into
or out of the accepted set and rerun the optimization. In the absence of additional
funds, forcing a proposal into the solution set always requires removing one or
more of the others. This analysis explicitly identifies the proposals that will be
sacrificed to accommodate the new project, emphasizing the zero-sum nature of
the budgeting process and making the consequences of funding the lower-rated
project salient.

Another issue well suited to sensitivity analysis is the budget constraint. In
most organizations, this is a “soft” constraint because the Chief Financial Officer
has some degree of discretion to increase or decrease capital spending. Running
the optimization with different budget constraints and examining which projects
enter or leave the recommended set gives concrete meaning to the consequences
of incremental funding shifts.

Because the analysis relies heavily on subjective assessments, it is important
to consider systematic judgment biases that may affect the results. One prob-
lem often occurs when the evaluated projects differ greatly in size and scope: In
early implementations, Strata consultants observed a tendency to neglect scope
differences. Consider, for example, an organization comparing a multimillion dol-
lar renovation of a major facility with spending $75 thousand to replace waiting
room chairs. A major facility project is generally going to have a huge impact,

2 An exception is that net present value is usually calculated in advance by hospital finance
staff based on deterministic assumptions of incremental effects on patient volumes, revenues,
and expenses. The software includes financial modeling templates to support this calculation.
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so executives are likely to award it high scores on attributes related to patient
comfort or facility quality (e.g., 100 on a 0 to 100 scale). However, they might look
at the waiting room furniture, conclude that it is in horrible condition, and assign
scores that are nearly as high (e.g., 90). This overemphasizes the impact of a rel-
atively modest improvement and makes it more difficult to justify funding larger
projects. Similar insensitivity to scope is well known in studies of the economic
valuation of environmental public goods (Kahneman, Ritov, and Schkade 1999).

When this problem was first identified, our initial response was to expand the
rating scale to extend from 0 to 1000, and to instruct evaluators to anchor on
values of 0, 1, 10, 100, and 1000. The hope was that inducing a log response scale
would encourage recognition of project scope. When this was not effective, our
response was to return to a 0 to 100 rating scale, but then instruct evaluators to rate
each attribute on benefit per dollar expended rather than total benefit realized.
Multiplying each rating by the project’s proposed cost produced the attribute
scores used in the value models. Although I am not aware of any rigorous research
that validates this method, evaluators perceive it to be intuitively appealing, and
we observe fewer obvious problems with scope neglect.

Another serious problem arose because many of the investments evaluated by
hospitals each year are projected to realize little or no financial return, presumably
because they are focused on other objectives. The optimization process would
sometimes generate a portfolio of projects with a negative aggregate net present
value, indicating that the portfolio as a whole was failing to earn more than the
cost of the capital invested in that portfolio. When considered in light of a typical
hospital’s thin profit margin and precarious financial position, most executives
would view this negative investment return as unacceptable.

One interpretation is that executives simply were not assigning sufficient
weight to financial return. However, healthcare executives were often uncomfort-
able with increasing this weight enough to make a difference, perhaps because
it would constitute an explicit statement that financial return far outweighs the
importance of the other objectives. Their concern is that this would effectively
undermine their vision of the organization as a mission-focused enterprise pri-
marily concerned with quality and quantity of care delivered rather than financial
profit.

In fact, this problem is ultimately related to the additivity and preference
independence assumptions required when using linear additive value functions in
the optimization objective. Our discussions with healthcare executives suggested
that their preferences violated the assumptions. Specifically, when the portfo-
lio’s aggregate financial return is negative, improvements in financial return are
extremely important to them, but as aggregate financial return increases, their
preferences for improvements in financial return become less important relative
to improvements in other attributes.

Modeling approaches that account for violations of additivity and preference
independence are available, although the required assessments and the associated
nonlinear optimizations are more challenging to implement. Our concern was
that this added complexity would undermine the practical value of the approach
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because organizations would be less likely to implement the models or accept the
results. Instead, our solution was to modify the optimization model by introducing
a financial performance constraint. This constraint required that the aggregate net
present value meet or exceed a minimum acceptable level. With this constraint in
place, portfolios with poor financial performance become infeasible, essentially
narrowing the set of possible portfolios to those where it was reasonable to give
financial return a relatively low weight. Typically, introducing this constraint forces
a few money-losing projects out and replaces them with a few cash-generating
projects. This helps the organization achieve an acceptable financial return without
ignoring mission-related objectives.

The approach described here makes no attempt to explicitly address uncer-
tainty, except through the use of sensitivity analysis on project benefits and costs.
For projects that require significant financial commitments, healthcare organiza-
tions can and should use tools like decision trees, influence diagrams, and prob-
abilistic risk analysis (Kleinmuntz, Kleinmuntz, Stephen, and Nordlund 1999).
Recently, one of Strata’s larger clients, a multistate healthcare system with nearly
thirty hospitals, has started to require a quantitative risk analysis for any new
project requesting more than $35 million in capital. Their review process places
particular emphasis on whether there are adequate risk management plans in
place.

However, this organization is the exception rather than the rule. Most hospi-
tals are hard-pressed to develop deterministic financial analyses for their projects.
A full-fledged analysis of both uncertainty and multiple objectives is almost cer-
tainly beyond their grasp. The approach described here affords a balance between
analytical sophistication and implementation effort, while providing a foundation
for implementing more advanced models in the future.

Conclusion: Benefits and Costs of Decision Analysis
for Resource Allocation

The ultimate test of any decision analysis approach is the impact on the organi-
zation and its decision makers. In the hospital setting, executives clearly perceive
an improvement relative to the relatively unsystematic and undisciplined process
that they previously used. The process is also accessible and relatively easy to
implement with the support provided by the software system. Although Strata
provides initial support and facilitation, after several years, most hospitals learn
to implement the process with minimal involvement from outside consultants.

The open, collaborative nature of the decision process is also a positive.
Because the reasoning behind these resource allocation decisions is transparent,
there is a sense that everyone is on a level playing field. This promotes consensus
around the recommendations that emerge. In the best spirit of decision analysis, it
is the sound and logical nature of the process that gives the participants confidence
that scarce resources are being put to the best use.

The presumed advantage of any approach for incorporating decision analy-
sis into resource allocation is that decisions are based on reflective, systematic
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analysis. On the other hand, the effort required can be considerable when a port-
folio contains dozens or hundreds of candidate projects. Many organizations lack
either the resources or the resolve to do rigorous decision analysis on this scale.
Where organizations often need the most help is in accurately estimating the
true benefits and costs of decision analytic approaches relative to other resource
allocation processes.

This is a problem that has received remarkably little research attention. In one
of the few investigations of its kind, Kiesler (2004) models the portfolio analysis
process and compares different analytical strategies. In particular, he compares
systematic prioritization strategies both with and without rigorous project analy-
ses. His conclusion is that systematic prioritization without rigorous project anal-
ysis (or using heuristic approaches) merits serious consideration in many organi-
zations because prioritization based on informal project evaluation yields a large
fraction of the value realized from prioritization based on rigorous evaluation.
Care should be taken in interpreting this result, however, because there is at least
some field-based evidence to suggest that the value realized from rigorous analy-
sis far outweighs the resources required to implement it (Clemen and Kwit 2001).
One way to shed light on this issue would be to conduct more in-depth evaluations
of these models at work in real organizations.
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